OMC4DBD: ordinary muon capture studies for the matrix elements in double beta decays

OMC4DBD:双β衰变中基质元素的普通μ子捕获研究

基本信息

项目摘要

In this project is proposed to measure the ordinary muon capture (OMC) on several enriched isotopes in order to investigate neutrino nuclear responses for neutrinoless double beta decay (DBD), namely 136-Ba, 76-Se and 96-Mo. This work extends our program of OMC measurements for daughter nuclei of DBD-nuclei aimed to improve calculations of nuclear matrix elements (NME) of neutrinoles bb-decay process as well as our understanding of g_A quenching in this process. The muon absolute lifetime and radioactive production rate for OMC will be studied during the experiment. High-purity Ge detectors will be used to register the energy and time distribution of gamma-rays, following muon capture. The measured absolute lifetime together with the relative strength distribution will confirm the absolute capture strength as a function of the excitation energy and will help to extend shell model calculations to the heavy DBD isotope mass region and Supernova studies.
在该项目中,建议测量几种富集同位素(即 136-Ba、76-Se 和 96-Mo)的普通 μ 子俘获(OMC),以研究中微子双 β 衰变(DBD)的中微子核反应。这项工作扩展了我们对 DBD 核子核的 OMC 测量计划,旨在改进中微子 bb 衰变过程的核基质元素 (NME) 的计算以及我们对该过程中 g_A 猝灭的理解。 实验期间将研究OMC的μ子绝对寿命和放射性生产率。高纯度Ge探测器将用于记录μ子捕获后伽马射线的能量和时间分布。测量的绝对寿命与相对强度分布一起将确认绝对捕获强度作为激发能量的函数,并将有助于将壳模型计算扩展到重 DBD 同位素质量区域和超新星研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Stefan Schönert其他文献

Professor Dr. Stefan Schönert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Harnessing the power of ordinary people to prevent cyber abuse
利用普通人的力量来防止网络滥用
  • 批准号:
    DE240100080
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Revealing everyday resistance during the war in Bosnia: how did ordinary people's actions disrupt conflict and promote peace?
揭示波斯尼亚战争期间的日常抵抗:普通民众的行为如何平息冲突、促进和平?
  • 批准号:
    2887258
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Learning Ecosystem Dynamics using Neural Ordinary Differential Equations
使用神经常微分方程学习生态系统动力学
  • 批准号:
    23K14274
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Agroecosystems in a Climate Crisis: Using Big Data to understand the Out of the Ordinary
气候危机中的农业生态系统:利用大数据了解异常情况
  • 批准号:
    2882391
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Adaptation of Dynamic Weighted Ordinary Least Squares Regression in the Presence of Interference Networks
存在干扰网络时动态加权普通最小二乘回归的自适应
  • 批准号:
    569021-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Ordinary Citizenship
普通公民
  • 批准号:
    AH/W002264/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Fellowship
The Ordinary Affects of Conspiracy Thinking
阴谋思维的一般影响
  • 批准号:
    2757290
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Political Behaviors of Elites and Ordinary People over Parties in Authoritarian Regimes: Evidence from Russia and Ukraine
威权政权下精英和普通民众对政党的政治行为:来自俄罗斯和乌克兰的证据
  • 批准号:
    21J00191
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了