Variational problem and evolution equation of curves and surfaces
曲线曲面的变分问题及演化方程
基本信息
- 批准号:14204004
- 负责人:
- 金额:$ 20.13万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The most natural variational problem of closed submanifolds in the 3-euclidean space is the elastic curves in 1-dimensional case, and the constant mean curvature surfaces in 2-dimensional case. These problems are extended naturally to n-euclidean spaces as curves or hyper surfaces. However, we don't have good variational problem of closed mid-dimensional submanifold in n-dimensional euclidean spaces In this research, we defined the following new good variational problem. Consider pairs (S, dS) of minimal submanifold S and its boundary dS. Given the volume of dS, we seek a minimal submanifold S whose volume attains maximum. A solution of this variational problem is called a max-min submanifold. We got the following results.1. The pair of a totally geodesic submanifold and its constant mean curvature surfaces is max-min submanifold.2. In particular, a round sphere of any dimensional Euclidean space with any codimension is max-min submanifold.3. The solution (2) is stable.4. A pair of a minimal cone C and the intersection of C and the unit sphere is max-min submanifold.5. We can construct non-homogeneous examples in the torus.6. Since the variational problem is conditional, two stabilities are defined. Let k be the trace of second fundamental form for outer unit vector. If k is positive, then the solution is A-unstable. If k is negative, then A-stability and B-stability are equivalent.
三维欧氏空间中闭子流形最自然的变分问题,在一维情况下是弹性曲线,在二维情况下是常平均曲率曲面。这些问题自然地扩展到n-欧几里德空间的曲线或超曲面。然而,在n维欧氏空间中并没有关于闭中维子流形的良变分问题。考虑极小子流形S及其边界dS的对偶(S,dS).给定dS的体积,我们寻找体积达到最大的极小子流形S。这个变分问题的解称为极大极小子流形。我们得到了以下结果。1.全测地子流形与其常平均曲率曲面的对是极大极小子流形.特别地,具有任意余维的任意维欧氏空间的圆球是极大极小子流形.溶液(2)是稳定的。4.一对极小锥C及其与单位球面的交是极大极小子流形.我们可以在环面中构造非齐次的例子。由于变分问题是有条件的,定义了两个稳定性。设k是外单位向量的第二基本形式的迹。如果k是正的,则解是A-不稳定的。如果k是负的,那么A-稳定性和B-稳定性是等价的。
项目成果
期刊论文数量(36)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An analogue of minimal surface theory in Sl(n,C)
Sl(n,C) 中最小曲面理论的模拟
- DOI:
- 发表时间:2002
- 期刊:
- 影响因子:0
- 作者:M.Kokubu;M.Takahashi;M.Umehara;K.Yamada
- 通讯作者:K.Yamada
HAMILTONIAN STABILITY OF CERTAIN MINIMAL LAGRANGIAN SUBMANIFOLDS IN COMPLEX PROJECTIVE SPACES
- DOI:10.2748/tmj/1113247132
- 发表时间:2003-12
- 期刊:
- 影响因子:0.5
- 作者:A. Amarzaya;Y. Ohnita
- 通讯作者:A. Amarzaya;Y. Ohnita
Kirchhoff elastic rods in the three-sphere
三球体中的基尔霍夫弹性杆
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Ohta;Hiroshi;(with K.Ono);中村 研一;荒川慎太郎;寺田 浩明(鄭芙蓉訳);小田淳一;J.Itoh;土田 道夫;堀江康熙;O.Fujino;H.Tsuji;S.Kawakubo
- 通讯作者:S.Kawakubo
An analogue of the UP-iteration for constant mean curvature one surfaces in Hyperbolic $3$-space
双曲 $3$ 空间中一个曲面的恒定平均曲率 UP 迭代的类似物
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Y. Haga;et. al.;C.McCune
- 通讯作者:C.McCune
On a variational problem for soap films, with gravity and partially free boundary
关于具有重力和部分自由边界的皂膜变分问题
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Miyuki Koiso;Bennett Palmer
- 通讯作者:Bennett Palmer
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOISO Norihito其他文献
KOISO Norihito的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOISO Norihito', 18)}}的其他基金
non-existence of minimal surfaces connecting distant curves
不存在连接远距离曲线的最小曲面
- 批准号:
23654026 - 财政年份:2011
- 资助金额:
$ 20.13万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Global analysis of curves and surfaces
曲线和曲面的全局分析
- 批准号:
09304009 - 财政年份:1997
- 资助金额:
$ 20.13万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Nonlinear Schrodinger eqnations on riemannian manitolds
黎曼马尼托尔德的非线性薛定谔方程
- 批准号:
07454017 - 财政年份:1995
- 资助金额:
$ 20.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
On a p-Laplace type evolution equation with random variable exponent and a stochastic force
具有随机变量指数和随机力的p-拉普拉斯型演化方程
- 批准号:
259634327 - 财政年份:2014
- 资助金额:
$ 20.13万 - 项目类别:
Research Grants
Geometric structure-preserving finite difference method for vector-valued evolution equation
向量值演化方程的几何保结构有限差分法
- 批准号:
24654026 - 财政年份:2012
- 资助金额:
$ 20.13万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Synthetic study of nonlinear evolution equation and its related topics
非线性演化方程及其相关课题的综合研究
- 批准号:
21340032 - 财政年份:2009
- 资助金额:
$ 20.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Reserch on the stability of solutions of geometric evolution equation using group equivariance
利用群等方差研究几何演化方程解的稳定性
- 批准号:
17540188 - 财政年份:2005
- 资助金额:
$ 20.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evolution equation and the Ricci curvature of complex manifolds
复流形的演化方程和里奇曲率
- 批准号:
5257825 - 财政年份:2002
- 资助金额:
$ 20.13万 - 项目类别:
Research Grants
Reseach on a nonlinear evolution equation including chaos and soliton.
研究包含混沌和孤子的非线性演化方程。
- 批准号:
61540277 - 财政年份:1986
- 资助金额:
$ 20.13万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)