Arithmetic of Algebraic Varieties and their Moduli Spaces
代数簇及其模空间的算术
基本信息
- 批准号:15204001
- 负责人:
- 金额:$ 25.63万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let X be a non-singular complete algebraic variety of dimension n over an algebraically closed field k. X is said to be a Calabi-Yau variety if the canonical bundle is trivial and the cohomology groups of the structure sheaf vanish except for degrees 0 and n. In this research, using the Artin-Mazur formal group of Calabi-Yau variety, I examine the structure of Calabi-Yau variety. As joint-works with van der Geer, I got the following results. Let X^{r} (p) be the Calabi-Yau variety of Fermat type of dimension r in characteristic p>0. Then, we could show the height h of the Artin-Mazur formal group is either one or the infinity, and h is equal to one if and only if p is equal to one modulo r+ 2. M. Artin gave a conjecture that a K3 surface X in characteristic p>0 is supersingular in the sense of Shioda if and only if it is supersingular in the sense of Artin. It is easy to show that for the Fermat K3 surface X^{2} (p) the conjecture holds. Using our results, we see that we cannot generalize the conjecture to the case of higher dimension. We also examined rigid generalized Kummer Calabi-Yau varieties X. The intermediate Jacobian variety of X is isomorphic to an elliptic curve E. We consider the reduction modulo p, and in some special cases we make clear the relation between the height of Artin-Mazur formal group of X mod p and the supersingularity of E mod p. As for the differential forms on Calabi-Yau varieties, we gave a result on the pairing of the cohomology groups of Illusie sheaves. We also showed that the maximal dimension of complete subvariety which is contained in the moduli space M_{2d} of polarized K3 surfaces of degree 2d is equal to 17.
设X是代数闭域k上n维的非奇异完备代数簇,如果标准丛平凡且结构束的上同调群除0次和n次外零,则称X为Calabi-Yau簇.本文利用Calabi-Yau簇的Artin-Mazur形式群研究了Calabi-Yau簇的结构.作为与范德格尔的联合工作,我得到了以下结果。设X^{r}(P)是特征p>;0中维r的Fermat型的Calabi-Yau簇。然后,我们可以证明Artin-Mazur形式群的高度h是1或无穷大,且h等于1当且仅当p等于1模r+2。Artin提出了一个猜想:特征p>;0中的K3曲面X是Shioda意义下的超奇异当且仅当它是Artin意义下的超奇异的。很容易证明,对于Fermat K3曲面X^{2}(P),猜想成立。使用我们的结果,我们看到我们不能将猜想推广到高维的情况。我们还研究了刚性广义Kummer Calabi-Yau簇X。X的中间Jacobian簇同构于一条椭圆曲线E。我们考虑了约化模p,在某些特殊情况下,我们明确了X mod p的Artin-Mazur形式群的高度与E mod p的超奇性之间的关系。对于Calabi-Yau簇上的微分形式,我们给出了Illusie层的上同调群的配对结果。我们还证明了包含在2d次极化K3曲面的模空间M2d}中的完备子簇的最大维度等于17。
项目成果
期刊论文数量(104)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On a stratification of the moduli of K3 surfaces in positive characteristic
正特性K3面模量的分层
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:S.Gustafson;K.Nakanishi;T.Tsai;A.Mochizuki;T.Minamoto;西川 青季;T. Katsura
- 通讯作者:T. Katsura
Ramification theory of varieties over a perfect field
完美域上的品种的衍生理论
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:J.Aaronson;H.Nakada;K. Kato and T. Saito
- 通讯作者:K. Kato and T. Saito
Theta constants associated to coverings of P^1 branching at 8 points
与 8 个点处的 P^1 分支覆盖相关的 Theta 常数
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:K.Matsumoto;T.Terasoma
- 通讯作者:T.Terasoma
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATSURA Toshiyuki其他文献
Asymptotic formula for balanced words
平衡词的渐近公式
- DOI:
10.1016/j.jnt.2021.07.014 - 发表时间:
2022 - 期刊:
- 影响因子:0.7
- 作者:
KATSURA Toshiyuki;SAITO Natsuo;Akiyama Shigeki - 通讯作者:
Akiyama Shigeki
メタ群論とポセット幾何
元群理论和 posset 几何
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
KATSURA Toshiyuki;SAITO Natsuo;Akiyama Shigeki;早坂太;高村 茂 - 通讯作者:
高村 茂
F分裂しないdel Pezzo曲面とその自己同型群
无F分裂的del Pezzo曲面及其自同构群
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
KATSURA Toshiyuki;SAITO Natsuo;齋藤 夏雄;齋藤 夏雄 - 通讯作者:
齋藤 夏雄
Fano varieties in positive characteristic and their F-splittings
Fano 品种的正特征及其 F 分裂
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
KATSURA Toshiyuki;SAITO Natsuo;齋藤 夏雄;齋藤 夏雄;齋藤 夏雄;齋藤 夏雄;Natsuo Saito - 通讯作者:
Natsuo Saito
Deformation spaces of rational double points in small characteristic
小特征有理双点变形空间
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
KATSURA Toshiyuki;SAITO Natsuo;齋藤 夏雄;齋藤 夏雄;齋藤 夏雄;齋藤 夏雄;Natsuo Saito;齋藤 夏雄 - 通讯作者:
齋藤 夏雄
KATSURA Toshiyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATSURA Toshiyuki', 18)}}的其他基金
Arithmetic and Geometry over Calabi-Yau Varieties
Calabi-Yau 品种的算术和几何
- 批准号:
24540053 - 财政年份:2012
- 资助金额:
$ 25.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on algebraic varieties related to moduli spaces and algebraic cycles
与模空间和代数环相关的代数簇研究
- 批准号:
19104001 - 财政年份:2007
- 资助金额:
$ 25.63万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Studies on agebraic geometry in positive characteristic, coding theory and cryptography
正特征、编码理论和密码学中的年龄数几何研究
- 批准号:
12554001 - 财政年份:2000
- 资助金额:
$ 25.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studies on Algebraic Geometry and Coding Theory
代数几何与编码理论研究
- 批准号:
10640006 - 财政年份:1998
- 资助金额:
$ 25.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Orenall Study on Algebraic Varieties and its Applications
Orenall 代数簇及其应用研究
- 批准号:
07304002 - 财政年份:1995
- 资助金额:
$ 25.63万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似海外基金
Brill-Noeter theory for semi stable bundles on curves which are contained in a K3 surface and around the fields
K3 曲面和场周围的曲线上的半稳定丛的 Brill-Noeter 理论
- 批准号:
16K05101 - 财政年份:2016
- 资助金额:
$ 25.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Correspondences of K3 surface via moduli of sheaves
K3 表面通过滑轮模量的对应关系
- 批准号:
EP/D061997/1 - 财政年份:2006
- 资助金额:
$ 25.63万 - 项目类别:
Research Grant














{{item.name}}会员




