Study on algebraic varieties related to moduli spaces and algebraic cycles

与模空间和代数环相关的代数簇研究

基本信息

  • 批准号:
    19104001
  • 负责人:
  • 金额:
    $ 58.99万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
  • 财政年份:
    2007
  • 资助国家:
    日本
  • 起止时间:
    2007 至 2011
  • 项目状态:
    已结题

项目摘要

Algebraic variety is the geometric object which is defined by somepolynomials. It is a fundamental object to study in mathematics. In our research, westudied algebraic varieties in characteristic p > 0, and we defined the notions of a-number,b-number and h-number. We made clear the relations between them, and gave someapplications. We also studied superspecial K3 surfaces in characteristic 2, and 3. We gaveinteresting configurations of non-singular rational curves on them and determined therelation between the configurations and the lattice theory.
代数簇是由某些多项式定义的几何对象。它是数学研究的一个基本对象。在我们的研究中,我们研究了特征p>0的代数簇,定义了a-数、b-数和h-数的概念。明确了它们之间的关系,并给出了一些应用。我们还研究了特征2和特征3中的超特殊K3曲面,给出了它们上有趣的非奇异有理曲线的构形,并确定了这些构形与格论的关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cohomological Hasse principle and applications
上同调哈斯原理及应用
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.Kurita;J.Kataoka;et al.;Y. Tsutsumi;Shujii Saito
  • 通讯作者:
    Shujii Saito
A $p$-adic regulator map and finiteness results for arithmetic schemes
算术方案的 $p$-adic 调节器映射和有限性结果
Applications of arc spaces to birational geometry I, II
弧空间在双有理几何中的应用 I、II
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    大杉英史;日比孝之;K. Oguiso;福本謹一編著;S.Ishii
  • 通讯作者:
    S.Ishii
Local Fourier transform and epsilon factors
局部傅立叶变换和 epsilon 因子
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Ahmed Abbes;Takeshi Saito
  • 通讯作者:
    Takeshi Saito
Motivic construction of relative completion
相对完成的动机构建
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Asakura;S.Saito;斎藤毅;Takeshi Saito;斎藤毅;Takeshi Saito;Tomohide Terasoma
  • 通讯作者:
    Tomohide Terasoma
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KATSURA Toshiyuki其他文献

Asymptotic formula for balanced words
平衡词的渐近公式
  • DOI:
    10.1016/j.jnt.2021.07.014
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    KATSURA Toshiyuki;SAITO Natsuo;Akiyama Shigeki
  • 通讯作者:
    Akiyama Shigeki
メタ群論とポセット幾何
元群理论和 posset 几何
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    KATSURA Toshiyuki;SAITO Natsuo;Akiyama Shigeki;早坂太;高村 茂
  • 通讯作者:
    高村 茂
F分裂しないdel Pezzo曲面とその自己同型群
无F分裂的del Pezzo曲面及其自同构群
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    KATSURA Toshiyuki;SAITO Natsuo;齋藤 夏雄;齋藤 夏雄
  • 通讯作者:
    齋藤 夏雄
Fano varieties in positive characteristic and their F-splittings
Fano 品种的正特征及其 F 分裂
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    KATSURA Toshiyuki;SAITO Natsuo;齋藤 夏雄;齋藤 夏雄;齋藤 夏雄;齋藤 夏雄;Natsuo Saito
  • 通讯作者:
    Natsuo Saito
Deformation spaces of rational double points in small characteristic
小特征有理双点变形空间
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    KATSURA Toshiyuki;SAITO Natsuo;齋藤 夏雄;齋藤 夏雄;齋藤 夏雄;齋藤 夏雄;Natsuo Saito;齋藤 夏雄
  • 通讯作者:
    齋藤 夏雄

KATSURA Toshiyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KATSURA Toshiyuki', 18)}}的其他基金

Arithmetic and Geometry over Calabi-Yau Varieties
Calabi-Yau 品种的算术和几何
  • 批准号:
    24540053
  • 财政年份:
    2012
  • 资助金额:
    $ 58.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Arithmetic of Algebraic Varieties and their Moduli Spaces
代数簇及其模空间的算术
  • 批准号:
    15204001
  • 财政年份:
    2003
  • 资助金额:
    $ 58.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Studies on agebraic geometry in positive characteristic, coding theory and cryptography
正特征、编码理论和密码学中的年龄数几何研究
  • 批准号:
    12554001
  • 财政年份:
    2000
  • 资助金额:
    $ 58.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Studies on Algebraic Geometry and Coding Theory
代数几何与编码理论研究
  • 批准号:
    10640006
  • 财政年份:
    1998
  • 资助金额:
    $ 58.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Orenall Study on Algebraic Varieties and its Applications
Orenall 代数簇及其应用研究
  • 批准号:
    07304002
  • 财政年份:
    1995
  • 资助金额:
    $ 58.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似海外基金

接続のモジュライ理論を用いたパンルヴェ方程式の理論の拡張
使用连接模理论扩展 Painlevé 方程理论
  • 批准号:
    24K06674
  • 财政年份:
    2024
  • 资助金额:
    $ 58.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
正則アノマリー方程式とモジュライ空間の幾何学
正则异常方程与模空间几何
  • 批准号:
    24K06743
  • 财政年份:
    2024
  • 资助金额:
    $ 58.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
整p進ホッジ理論と関連するモジュライ空間の研究
p进Hodge理论相关模空间的研究
  • 批准号:
    24K16887
  • 财政年份:
    2024
  • 资助金额:
    $ 58.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
表現のモジュライとその周辺(5)
表达模数及其周围环境(5)
  • 批准号:
    24K06686
  • 财政年份:
    2024
  • 资助金额:
    $ 58.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
周期から得られるモジュライ空間の力学系に関する研究
周期模空间动力系统研究
  • 批准号:
    24K06751
  • 财政年份:
    2024
  • 资助金额:
    $ 58.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非アルキメデス的手法による超ケーラー多様体の数論とモジュライ
使用非阿基米德方法的超凯勒流形的数论和模
  • 批准号:
    23K20786
  • 财政年份:
    2024
  • 资助金额:
    $ 58.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
基本群のモジュライ空間の位相構造について
基本群模空间的拓扑结构
  • 批准号:
    24K16896
  • 财政年份:
    2024
  • 资助金额:
    $ 58.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
混標数モジュライ空間上の久賀・佐武構成とその応用
混合特征模空间的Kuga-Satake构造及其应用
  • 批准号:
    22KJ1780
  • 财政年份:
    2023
  • 资助金额:
    $ 58.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Analysis of singularities of extremal Riemann surfaces and Klein surfaces in moduli spaces
模空间中极值黎曼曲面和克莱因曲面的奇异性分析
  • 批准号:
    23K03138
  • 财政年份:
    2023
  • 资助金额:
    $ 58.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
  • 批准号:
    23K12949
  • 财政年份:
    2023
  • 资助金额:
    $ 58.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了