Mathematics on discrete and ultradiscrete integrable systems and its application
离散和超离散可积系统数学及其应用
基本信息
- 批准号:16204009
- 负责人:
- 金额:$ 26.62万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Among the systems of discrete equations, quantum mechanical lattice models and Cellular Automata (discrete dynamical systems which take finite number of states), there exist a class of systems named integrable systems in which exact solutions and/or statistical quantities can be expressed by analytic functions. In this research, we investigated mathematical aspects of these discrete integrable systems, in particular we clarified the mathematical structure of the Box-Ball system (BBS) which is a typical ultradiscrete system. The BBS is a dynamical system of balls moving in an array of boxes and shows solitonic behavior; it has soliton solutions, sufficient number of conserved quantities, and its initial value problem is solvable. Furthermore it has combinatorial features related to quantum integrable models; soliton scattering satisfies the Yang-Bater relation, its phase space and dynamics are related to some quantum algebra of deformation parameter q→0. For this BBS, we studied the ini … More tial value problem from various points of view such as elementary combinatorial methods, KKR bijection, soliton solutions of ultradiscrete KdV equation, and linealisation on the Jacobian variety. We found interesting relations between BBS and other mathematical objects such as Weyl groups, representation theory of quantum algebra, distribution of primes and so on. For example, conserved quantities of a generalized BBS are expressed by paths on a graph, the operation to determine the paths is equivalent to action of Weyl groups. We have also established the relation between fundamental cycles of the periodic BBS and eigenvalues of the transfer matrices of integrable lattice modes with quantum algebraic symmetry and showed that the string hypothesis of the Bethe ansatz equation is characterized by the conserved quantities of the periodic BBS. Furthermore we have made significant progress in the correlation functions of quantum integrable models, fundamental problems in ultradiscrete systems and application to traffic flows. Less
在离散方程系统、量子力学格点模型和元胞自动机(具有有限个状态的离散动力系统)中,存在一类称为可积系统的系统,其中精确解和/或统计量可以用解析函数表示。在这项研究中,我们研究了这些离散可积系统的数学方面,特别是我们澄清了Box-Ball系统(BBS),这是一个典型的超离散系统的数学结构。BBS是一个在盒子阵列中运动的球的动力学系统,表现出孤子行为;它有孤子解,足够数量的守恒量,其初值问题是可解的。此外,它还具有与量子可积模型相关的组合特征;孤子散射满足杨-巴特尔关系,其相空间和动力学与形变参数q→0的某些量子代数有关。为了这个论坛,我们研究了ini ...更多信息 从不同的观点,如初等组合方法,KKR双射,超离散KdV方程的孤子解,和雅可比簇的线性化的初值问题。我们发现BBS与Weyl群、量子代数表示理论、素数分布等数学对象之间存在着有趣的联系,例如,广义BBS的守恒量可以用图上的路表示,确定路的运算等价于Weyl群的作用。我们还建立了周期BBS的基本周期与具有量子代数对称性的可积晶格模的转移矩阵的本征值之间的关系,并证明了Bethe方程的弦假设是由周期BBS的守恒量所表征的。此外,我们在量子可积模型的关联函数、超离散系统的基本问题以及在交通流中的应用等方面也取得了重大进展。少
项目成果
期刊论文数量(37)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An isotropic cellular automaton for excitable media
可兴奋介质的各向同性元胞自动机
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:KITANO;Teruaki;SUZUKI;WADA;苧阪直行;T. Mabuchi;A. Nishiyama
- 通讯作者:A. Nishiyama
Periodic Box-Ball System and Riemann Hypothesis
周期盒球系统和黎曼假设
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Onaka;T;et. al.;Y. Nishiura;T. Tokihiro
- 通讯作者:T. Tokihiro
Pade approximation of Laplace transforms of some special functions in terms of Painleve equations
一些特殊函数的拉普拉斯变换用 Painleve 方程表示的 Pade 逼近
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Y.Nakamura;N.Ohira
- 通讯作者:N.Ohira
Fermionic basis for space of operators in the XXZ model
XXZ 模型中算子空间的费米子基
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:T. Kobayashi;A. Nilsson;M. Takeda;S.Ishii;神保雅一;Yoshihiro Takeyama
- 通讯作者:Yoshihiro Takeyama
Combinatorial Aspect of Integrable Systems (MSJ Memories 17)
可积系统的组合方面(MSJ 记忆 17)
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:J.Berndt;H.Tamaru;M. Iima and Y. Nishiura;Atsuo Kuniba
- 通讯作者:Atsuo Kuniba
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TOKIHIRO Tetsuji其他文献
TOKIHIRO Tetsuji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TOKIHIRO Tetsuji', 18)}}的其他基金
Study on the integrable structure of ultradiscrete systems
超离散系统可积结构研究
- 批准号:
21340034 - 财政年份:2009
- 资助金额:
$ 26.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematics in ultradiscrete integrable systems
超离散可积系统中的数学
- 批准号:
12440046 - 财政年份:2000
- 资助金额:
$ 26.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis and Application of Integrable Cellular Automaton
可积元胞自动机的分析与应用
- 批准号:
09640245 - 财政年份:1997
- 资助金额:
$ 26.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Construction of ultradiscrete integrable system
超离散可积系统的构建
- 批准号:
23740091 - 财政年份:2011
- 资助金额:
$ 26.62万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




