Mathematics in ultradiscrete integrable systems
超离散可积系统中的数学
基本信息
- 批准号:12440046
- 负责人:
- 金额:$ 8.7万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1.We have determined asymptotic behaviour of the fundamental cycle of periodic box-ball systems (PBBSs) of type (A_1^<(1)>)in the limit of the system size N, N → ∞. Due to the integrability of the PBBS, their orbits are located in a small region of the phase space the volume of which is proportional to exp[N]. We have proved that the maximum fundamental cycle is of order of exp[N ^<1/2>], but that almost all the fundamental cycle is less than exp[(log N)^2].2.We constructed the geometric crystal, which was proposed by Berenstein and Kazhdan, for the affine Lie algebra Using the realization by matrices with spectral parameters, the birational transformation (tropical R matrix), which intertwines the tensor product of the geometric crystals, is obtained. We also proved its uniqueness.The tropical R matrix is comutable with the geometric Kashiwara operators and satisfies the Yang-Baxter relation.It does not preserve the inverse operation to addition formulae and produce piecewise linear equations for ultradiscrete systems.3.We have constructed the combinatorial R matrices for B_n^<(1)>, D_n^<(1)>, A_<2n>^<(2)> and D_<n+1>^<(2)>. The soliton scattering in the lattices with Boltzmann weight given by these R matrices are expressed as the action by Wyle group. We also constructed an analogue to the inverse scattering methods.
1.在系统规模N,N→∞的极限下,我们确定了(A_1^<;(1)>;)型周期箱球系统(PBBS)基本循环的渐近行为。由于PBB的可积性,它们的轨道位于相空间的一个小区域内,该区域的体积与exp[N]成正比。我们证明了最大基本循环是exp[N^<;1/2>;]的量级,但几乎所有的基本循环都小于exp[(Log N)^2]。2.我们构造了Berenstein和Kazhdan提出的几何晶体,对于仿射李代数,利用带谱参数的矩阵实现,得到了将几何晶体的张量积缠绕在一起的双子变换(热带R矩阵)。3.构造了B_n^<;(1)<;(1)>;(1)>;,A_n<;2n>;^<;(2)>;以及D_n^<;n+1>;(2)>;由这些R矩阵给出的玻尔兹曼权晶格中的孤子散射被表示为Wyle群的作用。我们还构造了一个类似于逆散射方法的方法。
项目成果
期刊论文数量(68)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Nagai: "Conserved quantities of box ball system"Glasgow Math. J.. 43A. 91-97 (2001)
A.Nagai:“盒子球系统的守恒量”格拉斯哥数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Kimijima, T.Tokihiro: "Initial value problem of discrete periodic Toda equation and its ultradiscretization"Inverse Problems. 18. 1705-1732 (2002)
T.Kimijima、T.Tokihiro:“离散周期户田方程的初值问题及其超离散化”反问题。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
G.Hatayama, A.Kuniba, T.Takagi: "Scattering rules in soliton cellular automata associated with crystal bases"Contemporary Mathematics. 297. 151-182 (2002)
G.Hatayama、A.Kuniba、T.Takagi:“与晶体基相关的孤子元胞自动机中的散射规则”当代数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
F.Yura: "On a periodic soliton cellular automaton"J.Phys. A : Math. Gen.. 35. 3787-3801 (2002)
F.Yura:“关于周期性孤子元胞自动机”J.Phys。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.D.Lorenzo: "Quasi-classical descendeants of disordered vertex models with boundaries"Nucl.Phys. B. 644. 409-432 (2002)
A.D.Lorenzo:“具有边界的无序顶点模型的准经典后代”Nucl.Phys。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TOKIHIRO Tetsuji其他文献
TOKIHIRO Tetsuji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TOKIHIRO Tetsuji', 18)}}的其他基金
Study on the integrable structure of ultradiscrete systems
超离散系统可积结构研究
- 批准号:
21340034 - 财政年份:2009
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematics on discrete and ultradiscrete integrable systems and its application
离散和超离散可积系统数学及其应用
- 批准号:
16204009 - 财政年份:2004
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Analysis and Application of Integrable Cellular Automaton
可积元胞自动机的分析与应用
- 批准号:
09640245 - 财政年份:1997
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
PRIMES: Matroids, Polyhedral Geometry, and Integrable Systems
PRIMES:拟阵、多面体几何和可积系统
- 批准号:
2332342 - 财政年份:2024
- 资助金额:
$ 8.7万 - 项目类别:
Standard Grant
Well-posedness and Long-time Behavior of Dispersive Integrable Systems
色散可积系统的适定性和长期行为
- 批准号:
2348018 - 财政年份:2024
- 资助金额:
$ 8.7万 - 项目类别:
Continuing Grant
Algebraic Geometry of Hitchin Integrable Systems and Beyond
希钦可积系统及其他代数几何
- 批准号:
2301474 - 财政年份:2023
- 资助金额:
$ 8.7万 - 项目类别:
Continuing Grant
Differential geometry and integrable systems: exploiting new links
微分几何和可积系统:利用新的联系
- 批准号:
23H00083 - 财政年份:2023
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Conference: Red Raider Mini-Symposium on Differential Geometry, Integrable Systems, and Applications
会议:Red Raider 微分几何、可积系统及应用小型研讨会
- 批准号:
2301994 - 财政年份:2023
- 资助金额:
$ 8.7万 - 项目类别:
Standard Grant
Conference: Finite Dimensional Integrable Systems 2023
会议:有限维可积系统 2023
- 批准号:
2308659 - 财政年份:2023
- 资助金额:
$ 8.7万 - 项目类别:
Standard Grant
Quantum groups, integrable systems and dualities
量子群、可积系统和对偶性
- 批准号:
2302661 - 财政年份:2023
- 资助金额:
$ 8.7万 - 项目类别:
Standard Grant
Algebraic Geometry and Integrable Systems -- Moduli theory and Equations of Painleve type
代数几何与可积系统——模理论与Painleve型方程
- 批准号:
22H00094 - 财政年份:2022
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Elliptic discrete integrable systems and bi-elliptic addition formulae
椭圆离散可积系统和双椭圆加法公式
- 批准号:
EP/W007290/1 - 财政年份:2022
- 资助金额:
$ 8.7万 - 项目类别:
Research Grant
Fluctuations and correlations at large scales from emergent hydrodynamics: integrable systems and beyond
新兴流体动力学中的大规模波动和相关性:可积系统及其他
- 批准号:
EP/W010194/1 - 财政年份:2022
- 资助金额:
$ 8.7万 - 项目类别:
Research Grant














{{item.name}}会员




