Active Crack Obstruction in High Temperature Ferritic Steels

高温铁素体钢中的活性裂纹阻碍

基本信息

项目摘要

At temperatures up to 650 °C HiperFer (High performance Ferrite) steels exhibit higher creep as well as thermomechanical fatigue (TMF) performance combines with strongly reduced crack propagation rates in comparison to ferritic-martensitic 9-12 wt.% Cr steels. Strengthening of these ferritic, high chromium, stainless steel grades is achieved by a combination of solid solution and intermetallic (Fe,Cr,Si)2(Nb,W) Laves phase particle precipitation. The microstructural mechanisms, which govern the improved fatigue strength and decreased crack propagation rates, are far from being understood. These mechanisms shall be identified and analysed in detail within the framework of the proposed project. Crofer 22 H, a predecessor of HiperFer steels, demonstrated that increased fatigue life is a result of strong cyclic hardening, which is partially caused by different morphologies of Laves phase particles. Furthermore, thermomechanically induced particle generation may occur in case of sufficiently high stress or plastic deformation at temperatures between 600 °C and 650 °C. This additionally contributes to an active crack obstruction, which is supposed to be verified within the framework of the presented project.Under cyclic loading, the formation of sub-grain boundaries in front of the crack tip was observed in Crofer 22H. Such grain refinement may cause further increase in cyclic hardening potential, which in turn may lead strongly reduced crack propagation rates. Moreover, the newly formed sub-grain boundaries in the crack tip region can act as potential nucleation sites and favour the precipitation of even more Laves phase particles. Higher particle density, observed at crack tips at 650 °C under thermomechanical loading, accompanied by sub-grain formation, may be interpreted as indication of this. The proposed project focuses on the clarification of the described phenomena at the microstructural level using SEM, EDX, EBSD and TEM analysis. For this purpose, isothermal LCF (low cycle fatigue) and HCF (high cycle fatigue) fatigue as well as crack propagation tests in air at temperatures between 600 °C and 650 °C will be performed. At this temperatures the formation of the potentially embrittling (Fe,Cr)--Phase can be excluded. Additionally, test frequencies of 0.005 Hz up to 20 Hz will be used, because the HiperFer steels revealed a pronounced dependency of crack propagation on the strain rate. Furthermore, this interrelation is influenced by the test temperature, which also will be investigated in the proposed research project.Moreover, the cyclic hardening behaviour will be analysed by using instrumented cyclic indentation tests (PhyBaLCHT), enabling the determination of the evolution of the material’s cyclic properties in the plastically deformed zone in front of the crack tip. Combined with microstructural analysis, this enhances the understanding of the underlying phenomena.
与铁素体-马氏体 9-12 wt.% Cr 钢相比,在高达 650 °C 的温度下,HiperFer(高性能铁素体)钢表现出更高的蠕变和热机械疲劳 (TMF) 性能,同时裂纹扩展速率大大降低。这些铁素体、高铬、不锈钢牌号的强化是通过固溶体和金属间化合物 (Fe,Cr,Si)2(Nb,W) Laves 相颗粒沉淀的结合来实现的。控制疲劳强度提高和裂纹扩展速率降低的微观结构机制尚不清楚。应在拟议项目的框架内详细确定和分析这些机制。 Crofer 22 H(HiperFer 钢的前身)证明,疲劳寿命的延长是强循环硬化的结果,而循环硬化的部分原因是 Laves 相颗粒的不同形态。此外,在 600 °C 至 650 °C 之间的温度下,如果应力或塑性变形足够高,则可能会发生热机械诱导的颗粒生成。这还有助于主动裂纹阻塞,这应该在本项目的框架内得到验证。在循环加载下,在 Crofer 22H 中观察到裂纹尖端前面形成亚晶界。这种晶粒细化可能导致循环硬化潜力进一步增加,进而可能导致裂纹扩展速率大大降低。此外,裂纹尖端区域新形成的亚晶界可以作为潜在的成核位点,有利于更多拉夫斯相颗粒的析出。在 650 °C 的热机械载荷下在裂纹尖端观察到更高的颗粒密度,并伴随着亚晶粒的形成,可以解释为这一点的迹象。拟议项目的重点是使用 SEM、EDX、EBSD 和 TEM 分析在微观结构水平上澄清所描述的现象。为此,将进行等温 LCF(低周疲劳)和 HCF(高周疲劳)疲劳以及空气中 600 °C 至 650 °C 温度下的裂纹扩展测试。在此温度下,可以排除潜在脆化 (Fe,Cr)-α-相的形成。此外,将使用 0.005 Hz 至 20 Hz 的测试频率,因为 HiperFer 钢揭示了裂纹扩展对应变率的明显依赖性。此外,这种相互关系受到测试温度的影响,这也将在拟议的研究项目中进行研究。此外,将使用仪器化循环压痕测试(PhyBaLCHT)来分析循环硬化行为,从而能够确定裂纹尖端前面的塑性变形区域中材料循环性能的演变。与微观结构分析相结合,这增强了对潜在现象的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Tilmann Beck其他文献

Professor Dr.-Ing. Tilmann Beck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Tilmann Beck', 18)}}的其他基金

Enhancement of damage tolerance of 52100 bearing steel by influencing the static and dynamic cold working features due to defined stabilized retained austenite
通过定义稳定残余奥氏体影响静态和动态冷加工特性,提高 52100 轴承钢的损伤容限
  • 批准号:
    420401443
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Analysis of the anisotropy influence on quasistatic and cyclic deformations of nickel base alloys by combining FEM methods with variational image processing
有限元方法与变分图像处理相结合分析各向异性对镍基合金准静态和循环变形的影响
  • 批准号:
    427779577
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Very-High-Cycle Fatigue of structured surfaces
结构化表面的极高循环疲劳
  • 批准号:
    202254861
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Units
Microstructure and mechanical properties
显微组织和力学性能
  • 批准号:
    164175303
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Schädigung und Lebensdauer martensitischer Stähle für Niederdruck-Dampfturbinenschaufeln bei Ermüdungsbeanspruchung im VHCF-Bereich
低压汽轮机叶片马氏体钢在 VHCF 范围疲劳应力下的损伤和使用寿命
  • 批准号:
    172190383
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Development of an efficient evaluation concept for the validation of cryotreatment of tool steels based on instrumented cyclic indentation tests
基于仪器化循环压痕试验,开发用于验证工具钢低温处理的有效评估概念
  • 批准号:
    521294773
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fatigue Strength Verification of Additively Manufactured Structures Considering the Local Loading Conditions and Microstructure (LBM-Fatigue)
考虑局部载荷条件和微观结构的增材制造结构的疲劳强度验证(LBM-疲劳)
  • 批准号:
    505646807
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Microstructural evaluation of the defect tolerance of Cu alloyed steels under cyclic loading
循环加载下铜合金钢缺陷容限的显微组织评价
  • 批准号:
    335746905
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Data-driven prediction of fatigue crack nucleation in directionally-solidified Ni-based superalloys
定向凝固镍基高温合金疲劳裂纹形核的数据驱动预测
  • 批准号:
    24K07230
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSF-SNSF: Crack Path Prediction and Control in Nonlinearly Viscoelastic Materials: in-silico to Experiments with Viscoelastic and Tough Hydrogels
NSF-SNSF:非线性粘弹性材料中的裂纹路径预测和控制:粘弹性和坚韧水凝胶的计算机实验
  • 批准号:
    2403592
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Fundamental Understanding of Chemical Complexity on Crack Tip Plasticity of Refractory Complex Concentrated Alloys
化学复杂性对难熔复合浓缩合金裂纹尖端塑性的基本认识
  • 批准号:
    2316762
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Combination of close mixed-planting and crack-treatment to alleviate soil waterlogging stress of soybean in upland field converted from paddy
密混混播与裂化处理相结合缓解旱田大豆土壤涝害胁迫
  • 批准号:
    23H02198
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Computational Intelligence based crack modeling and inspection under extreme temperatures variations
极端温度变化下基于计算智能的裂纹建模和检测
  • 批准号:
    23KF0240
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A new method for estimating crack growth history using cyclic plasticity near the fatigue crack tip as a parameter
使用疲劳裂纹尖端附近的循环塑性作为参数来估计裂纹扩展历史的新方法
  • 批准号:
    23H01625
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Titanium 64 cold dwell fatigue loading - effect of stress concentrations and fatigue crack growth rates
钛 64 冷驻疲劳载荷 - 应力集中和疲劳裂纹扩展速率的影响
  • 批准号:
    2879427
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Crack Magazine Mixed Reality Project
Crack 杂志混合现实项目
  • 批准号:
    10070406
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Development of Erosion-Resistant Cr/CrN Multilayer Coating Films with High Crack Growth Retardation Effect
具有高裂纹扩展延迟效果的耐冲蚀 Cr/CrN 多层涂膜的开发
  • 批准号:
    23K03576
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Acceleration and retardation behavior of creep-fatigue crack propagation in Ni-base superalloys: Mechanisms and quantitative modelling
镍基高温合金中蠕变疲劳裂纹扩展的加速和延迟行为:机制和定量建模
  • 批准号:
    23K03600
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了