Evaluation of the ionic conductivity of cation electrolytes by Kinetic Monte Carlo simulations

通过动力学蒙特卡罗模拟评估阳离子电解质的离子电导率

基本信息

项目摘要

Batteries and fuel cells allow the efficient storage of electrical energy and are inevitable for the energy transition and advancement of electromobility. In solid oxide fuel cells and solid state batteries, the ceramic electrolyte plays a crucial role. The development and optimization of electrolyte materials is thus required to increase efficiency, extend lifetime and lower cost of the devices.A wide variety of possible structures and compositions has been investigated in the past, but the sheer number of compounds complicates the experimental investigation of all possibilities. On an atomic level, material’s properties can be investigated by density functional theory and this approach has gained increasing importance in recent years, mainly due to the availability of computational resources. Using Kinetic Monte Carlo simulation, the energies and processes on the microscopic level can be applied to obtain the macroscopic ionic conductivity of the material by simulating the motion of mobile charge carriers through the lattice.In the present project, the ionic conductivity of selected cation conductors for Li+, Na+ and H+ ions will be investigated by combining density functional theory and Kinetic Monte Carlo simulations. The energy parameters, required in Monte Carlo simulations, will be obtained from literature and complemented by own calculations. The project is composed of four steps. In the first step, promising cation conductors are identified and energy parameters are collected from literature. In the second step, these energies are complemented by own calculations and used to create energy models in the third step. In the fourth step, the energy models are applied in Kinetic Monte Carlo simulations to obtain the ionic conductivity depending on temperature and composition.The goal of the project is the understanding and prediction of ionic conductivity. On the one hand side, a deeper insight into ionic conduction mechanisms and relation between composition, structure and ionic conductivity should be obtained. On the other hand, the project aims to predict materials with high ionic conductivity and optimize the composition.
电池和燃料电池可以有效存储电能,是能源转型和电动汽车进步的必然选择。在固体氧化物燃料电池和固态电池中,陶瓷电解质起着至关重要的作用。因此,需要开发和优化电解质材料,以提高设备的效率、延长使用寿命和降低成本。过去已经研究了多种可能的结构和成分,但化合物的数量庞大,使所有可能性的实验研究变得复杂。在原子水平上,材料的特性可以通过密度泛函理论来研究,并且这种方法近年来变得越来越重要,这主要是由于计算资源的可用性。利用动力学蒙特卡罗模拟,可以应用微观层面的能量和过程,通过模拟移动电荷载流子穿过晶格的运动来获得材料的宏观离子电导率。在本项目中,将通过结合密度泛函理论和动力学蒙特卡罗模拟来研究所选阳离子导体对Li+、Na+和H+离子的离子电导率。蒙特卡罗模拟所需的能量参数将从文献中获得并通过自己的计算进行补充。该项目由四个步骤组成。第一步,确定有前途的阳离子导体,并从文献中收集能量参数。在第二步中,这些能量通过自己的计算得到补充,并用于在第三步中创建能量模型。第四步,将能量模型应用于动力学蒙特卡罗模拟,以获得取决于温度和成分的离子电导率。该项目的目标是理解和预测离子电导率。一方面,应该更深入地了解离子传导机制以及组成、结构和离子传导性之间的关系。另一方面,该项目旨在预测具有高离子电导率的材料并优化其成分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Steffen Neitzel-Grieshammer其他文献

Professor Dr. Steffen Neitzel-Grieshammer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Steffen Neitzel-Grieshammer', 18)}}的其他基金

Relationship between composition, structure and conductivity in ceramic oxygen ion conductors with interstitial mechanism
间隙机制陶瓷氧离子导体成分、结构与电导率的关系
  • 批准号:
    338212203
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

ionic Hubbard 模型中符号问题与量子相变的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
LiNO3 - Ionic Liquids/H2O新型吸收式热泵工质对的物性与应用研究
  • 批准号:
    51506005
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Charge Delocalization: A New Tool for Controlling Ionic Selectivity and Conductivity of Ion-Exchange Membranes
职业:电荷离域:控制离子交换膜的离子选择性和电导率的新工具
  • 批准号:
    2237122
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Hexagonal-boron nitride and ionic liquid doped hybrid adsorbent for heat transformation applications
用于热转换应用的六方氮化硼和离子液体掺杂混合吸附剂
  • 批准号:
    22KF0300
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Ionic Conductivity in Doped Polymers Studied by Molecular Simulation
通过分子模拟研究掺杂聚合物中的离子电导率
  • 批准号:
    566895-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Unravelling the structural rules of antiperovskites and their derivatives
揭示反钙钛矿及其衍生物的结构规则
  • 批准号:
    22H01777
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Ionic Conductivity and Dielectric Constants
离子电导率和介电常数
  • 批准号:
    563158-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
RUI: CAS: Collaborative Research: Synthesis, Conductivity and Morphology of Cellulose-Based Ionic Materials
RUI:CAS:合作研究:纤维素基离子材料的合成、电导率和形貌
  • 批准号:
    2104375
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RUI: CAS: Collaborative Research: Synthesis, Conductivity and Morphology of Cellulose-Based Ionic Materials
RUI:CAS:合作研究:纤维素基离子材料的合成、电导率和形貌
  • 批准号:
    2104376
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Ionic Conductivity in Doped Polymers Studied by Molecular Simulation
通过分子模拟研究掺杂聚合物中的离子电导率
  • 批准号:
    566895-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Frequency Domain Characterization of Optically Controlled Processes in Perovskite Materials
钙钛矿材料光控过程的频域表征
  • 批准号:
    20K15028
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Origin of multi-polar magnetic fields at Uranus and Neptune investigated from ionic conductivity of ammonia under high pressure and high temperature
从高压高温下氨的离子电导率研究天王星和海王星多极磁场的起源
  • 批准号:
    20K22366
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了