CAREER: Charge Delocalization: A New Tool for Controlling Ionic Selectivity and Conductivity of Ion-Exchange Membranes

职业:电荷离域:控制离子交换膜的离子选择性和电导率的新工具

基本信息

项目摘要

Management of highly impaired waters (i.e., waters that contain high concentrations of salts and other dissolved solutes) is critical for applications such as water desalination and hydraulic fracturing. The difficulty of brine management hinders the growth of such applications, which ultimately affects the water and energy security of our Nation. Electrodialysis, a membrane-based technology that uses charged polymer membranes and electricity to separate ions, removing them from water, has been proposed for treating highly impaired waters. However, this technology is energy intensive and inefficient because the membrane performance significantly deteriorates when contacted by highly impaired waters. In this study, the connection between the chemical identity of the charged groups on the polymer backbone and the membrane performance will be systematically investigated. The development of such structure/property relationships will guide the design of membranes with improved transport properties when contacted by highly impaired waters. To enhance the involvement of low socioeconomic status students in STEM, a comprehensive summer research program for high school students will be developed. The program will involve hands-on laboratory work, a short course on membrane science, and dissemination of the results to a broad and diverse audience via outreach programs developed via a collaboration with the University of Michigan Museum of Natural History.Ion-exchange membranes (IEMs) that are used for treating highly impaired waters via electrodialysis contain low amounts of water. There is evidence of ion pairing in such materials, which ultimately decreases the charge density of the membrane and worsens both the ionic conductivity and selectivity. Increasing the charge delocalization of the fixed charge groups is hypothesized to enhance both the ionic conductivity and selectivity of low water content IEMs by weakening electrostatic interactions between the fixed charges and mobile ions. This hypothesis will be systematically tested via a combined experimental and modeling study on the influence of charge delocalization on transport properties of IEMs. The majority of IEMs for aqueous ion separations utilize sulfonate anions or trimethylammonium cations as the charged groups attached to the polymer backbone, so the proposed project will open up a new direction of study on IEMs for aqueous ion separations. Due to the fundamental nature of the proposed study, the knowledge generated will have broad implications for other technologies that use IEMs in low dielectric environments (e.g., energy conversion and storage devices).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对高度受损的水(即含有高浓度盐类和其他溶解溶质的水)的管理对于海水淡化和水力压裂等应用至关重要。盐水管理的困难阻碍了此类应用的发展,最终影响到我国的水和能源安全。电渗析是一种基于膜的技术,它使用带电的聚合物膜和电分离离子,将它们从水中去除,已被提议用于处理高度受损的水。然而,这项技术是能源密集型和低效的,因为当膜被高度受损的水接触时,膜的性能会显著恶化。在这项研究中,将系统地研究聚合物主链上带电基团的化学同一性与膜性能之间的关系。这种结构/性能关系的发展将指导膜的设计,使其在与高度受损的水接触时具有更好的传输性能。为了让社会经济地位较低的学生更多地参与STEM,将为高中生制定一个全面的暑期研究计划。该计划将包括动手实验室工作,膜科学的短期课程,并通过与密歇根大学自然历史博物馆合作开发的推广计划,将结果传播给广泛和不同的受众。离子交换膜(IEM)用于通过电渗析处理高度受损的水,其含水量较低。在这类材料中有离子配对的证据,这最终降低了膜的电荷密度,并恶化了离子传导性和选择性。假设增加固定电荷基团的电荷离域,可以通过削弱固定电荷与可移动离子之间的静电相互作用来提高低水含量离子交换膜的离子电导率和选择性。这一假说将通过电荷离域对IEM输运性质的影响的实验和模拟相结合的研究来系统地验证。大多数用于水相离子分离的离子交换膜利用磺酸盐阴离子或三甲基铵阳离子作为连接在聚合物主链上的带电基团,因此本项目将为水相离子分离的离子交换膜开辟一个新的研究方向。由于拟议研究的基本性质,所产生的知识将对在低介电环境中使用IEM的其他技术(例如,能量转换和存储设备)具有广泛的影响。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jovan Kamcev其他文献

Salt and Ion Transport in a Series of Crosslinked Amps/Pegda Hydrogel Membranes
一系列交联 Amps/Pegda 水凝胶膜中的盐和离子传输
  • DOI:
    10.2139/ssrn.4008756
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ni Yan;R. Sujanani;Jovan Kamcev;E. Jang;Kentaro Kobayashi;D. R. Paul;B. Freeman
  • 通讯作者:
    B. Freeman
Accurately measuring the ionic conductivity of membranes via the direct contact method
通过直接接触法准确测量膜的离子电导率
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    José C. Díaz;D. Kitto;Jovan Kamcev
  • 通讯作者:
    Jovan Kamcev
Cracks help membranes to stay hydrated
裂缝有助于薄膜保持水合作用
  • DOI:
    10.1038/532445a
  • 发表时间:
    2016-04-27
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Jovan Kamcev;Benny D. Freeman
  • 通讯作者:
    Benny D. Freeman
Influence of fixed charge concentration and water uptake on ion sorption in AMPS/PEGDA membranes
固定电荷浓度和吸水量对 AMPS/PEGDA 膜离子吸附的影响
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    N. Yan;R. Sujanani;Jovan Kamcev;M. Galizia;E. Jang;D. R. Paul;B. Freeman
  • 通讯作者:
    B. Freeman
Microtubule nanospool formation by active self-assembly is not initiated by thermal activation
通过主动自组装形成微管纳米线轴不是由热激活引发的
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Luria;Jasmine D. Crenshaw;Matthew E. Downs;Ashutosh Agarwal;S. Seshadri;John Gonzales;Ofer Idan;Jovan Kamcev;Parag Katira;Shivendra Pandey;T. Nitta;S. Phillpot;H. Hess
  • 通讯作者:
    H. Hess

Jovan Kamcev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

CHARGE综合征致病基因CHD7介导的三维转录调控网络研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
Sema3E在CHARGE综合症中的作用及机制研究
  • 批准号:
    81160144
  • 批准年份:
    2011
  • 资助金额:
    52.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAS: Proton-Coupled Electron Transfer Reactions from Ligand-to-Metal Charge Transfer Excited States.
CAS:配体到金属电荷转移激发态的质子耦合电子转移反应。
  • 批准号:
    2400727
  • 财政年份:
    2024
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant
STTR Phase I: Potassium Ion Battery with Intermediate Charge Rate Competes with Lithium Ferrophosphate (LFP)-based Lithium-Ion Batteries (LIBs)
STTR 第一阶段:具有中等充电速率的钾离子电池与基于磷酸铁锂 (LFP) 的锂离子电池 (LIB) 竞争
  • 批准号:
    2332113
  • 财政年份:
    2024
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant
ERI: Unravel Charge Transfer Mechanisms in the Bulk and at Interphases and Interfaces of Ionogel Solid Electrolytes for High-Power-Density All-Solid-State Li Metal Batteries
ERI:揭示高功率密度全固态锂金属电池的离子凝胶固体电解质的本体以及相间和界面的电荷转移机制
  • 批准号:
    2347542
  • 财政年份:
    2024
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant
Charge-Spin Conversions and Nonreciprocal Transport in Chiral Materials
手性材料中的电荷自旋转换和不可逆输运
  • 批准号:
    2325147
  • 财政年份:
    2024
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant
Charge Patterning and Molecular Interactions in the Phase Behavior of Polyelectrolyte/Particle Solutions
聚电解质/颗粒溶液相行为中的电荷模式和分子相互作用
  • 批准号:
    2347031
  • 财政年份:
    2024
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Continuing Grant
Charge-Controlled Materials for Separations of Important Resources
用于分离重要资源的电荷控制材料
  • 批准号:
    DP240103089
  • 财政年份:
    2024
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Discovery Projects
Understanding the role of organic ligands on charge transport and photocurrent generation in layered perovskites
了解有机配体对层状钙钛矿中电荷传输和光电流产生的作用
  • 批准号:
    2892542
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Studentship
New Horizons in the Atomistic Simulation of Charge and Exciton Transport in Optoelectronic Materials
光电材料中电荷和激子输运原子模拟的新视野
  • 批准号:
    2868548
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Studentship
NSF-BSF: Ultrafast Laser-Electron Heating for Tailoring the Emittance and Charge of High-Energy Proton Beams
NSF-BSF:超快激光电子加热用于调整高能质子束的发射率和电荷
  • 批准号:
    2308860
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant
A Component-wise Model for Understanding Spin-Charge Interactions in Nanoparticle Solids Using Targeted Synthesis, Magnetometry, and Magnetoresistance
利用靶向合成、磁力测定和磁阻来理解纳米颗粒固体中自旋电荷相互作用的组件模型
  • 批准号:
    2322706
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了