Cysteine biosynthesis acts as a regulatory hub for ABA-mediated stomatal closure

半胱氨酸生物合成充当 ABA 介导的气孔关闭的调节中心

基本信息

项目摘要

Stomatal closure is the fastest and most critical response of plants towards the drought-associated stresses soil drying, high light, and decreased air humidity. The phyto¬hormone absicic acid (ABA) is the crucial trigger for stomatal closure. Comprehensive studies identified the ABA receptor complex and the ABA signal transduction cascade in guard cells. In contrast, the knowledge about the localization and the dominant triggers of stress-induced ABA synthesis is only beginning to emerge. Our published work established xylem-transported sulfate as a new long-distance signal that allows the stomata to perceive the soil water status. We showed that in the leaf sulfate promotes the synthesis of cysteine by triggering de novo ABA production and that in principle this process is sufficient to promote stomatal closure. In addition, we found that high light stress-induced stomatal closure also depends on the ability to synthesize cysteine and ABA de novo. Here we will investigate the general significance of this mechanism by screening a spectrum of water deficit related stresses for their dependence on sulfate/cysteine triggered stomatal closure. With respect to the physiological response of the plant to drought-related stresses we will investigate if, how and in which cell types the two limiting steps of the ABA pathway are triggered by sulfate. Signaling by the oxylipin OPDA is known to mediate a distinct set of stress responses, among them stomatal closure in reaction to soil drying. However, any OPDA-specific receptor and signal transduction cascade is unknown. OPDA binds to the chaperone CYP20-3 in the chloroplast stroma where is promotes association and activity of the cysteine synthase complex. We propose that the CYP20-3/pCSC relay functions as a receptor complex for OPDA that stimulates ABA biosynthesis by controlling cysteine biosynthesis and will investigate this function using combinations of Arabidopsis mutants and stress conditions.If these hypotheses hold, plants would be able to coordinate different drought-associated stresses by the inclusion of these diverse stimuli into one endogenous signal: cysteine-induced ABA production.
气孔关闭是植物对干旱胁迫(土壤干燥、强光和空气湿度降低)的最快和最关键的反应。植物激素absicic acid (ABA)是气孔关闭的关键触发因子。综合研究发现了ABA受体复合物和ABA信号转导级联在保护细胞中的作用。相比之下,关于应力诱导ABA合成的定位和主要触发因素的知识才刚刚开始出现。我们发表的研究表明木质部运输的硫酸盐是一种新的长距离信号,允许气孔感知土壤水分状况。我们发现叶片中的硫酸盐通过触发ABA从头生成来促进半胱氨酸的合成,并且原则上这一过程足以促进气孔关闭。此外,我们还发现,强光胁迫诱导的气孔关闭也取决于半胱氨酸和ABA从头合成的能力。在这里,我们将通过筛选与水分亏缺相关的胁迫对硫酸盐/半胱氨酸触发的气孔关闭的依赖谱来研究这一机制的一般意义。关于植物对干旱胁迫的生理反应,我们将研究硫酸盐是否、如何以及在哪些细胞类型中触发ABA途径的两个限制步骤。已知由氧脂素OPDA发出的信号介导一系列独特的胁迫反应,其中包括对土壤干燥的气孔关闭反应。然而,任何opda特异性受体和信号转导级联是未知的。OPDA与叶绿体基质中的伴侣CYP20-3结合,促进半胱氨酸合成酶复合物的结合和活性。我们提出CYP20-3/pCSC接力作为OPDA的受体复合物,通过控制半胱氨酸的生物合成来刺激ABA的生物合成,并将通过拟南芥突变体和胁迫条件的组合来研究这种功能。如果这些假设成立,植物将能够通过将这些不同的刺激纳入一个内源性信号:半胱氨酸诱导的ABA生产来协调不同的干旱相关胁迫。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Rüdiger Hell其他文献

Professor Dr. Rüdiger Hell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Rüdiger Hell', 18)}}的其他基金

Redox-sensitive switches in the core S-assimilation/GSH-biosynthetic pathway of plants
植物核心 S-同化/GSH-生物合成途径中的氧化还原敏感开关
  • 批准号:
    251965288
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Dissection of general and specific regulatory mechanism of sulfur metabolism in Arabidopsis thaliana
拟南芥硫代谢一般和特异性调控机制的剖析
  • 批准号:
    235736350
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
The regulatory function of the plant cysteine synthase protein complex for cellular cysteine homeostasis
植物半胱氨酸合酶蛋白复合物对细胞半胱氨酸稳态的调节功能
  • 批准号:
    115487487
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Molecular approaches towards control of sulfur flux in plants through selective deregulation of cysteine synthase complexes
通过选择性解除半胱氨酸合酶复合物控制植物硫通量的分子方法
  • 批准号:
    87777596
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Identifizierung struktureller, biochemischer und molekularer Merkmale der Stickstoff-Nutzungseffizienz
氮利用效率的结构、生化和分子特征鉴定
  • 批准号:
    5366252
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Research Units
Die Rolle des Schwefelstoffwechsels bei der Pathogenresistenz in Brassicaceen
硫代谢在十字花科病原菌抗性中的作用
  • 批准号:
    5258884
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Research Units
Stress-induced regulation of N-terminal acetylation controls proteostasis in plants
应激诱导的 N 末端乙酰化调节控制植物中的蛋白质稳态
  • 批准号:
    496871662
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

中老年男性迟发性性腺功能障碍(LOH)分子生物学机制的研究
  • 批准号:
    30772285
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Using Microbial Bioproduction Platform to Elucidate Phytochemical Biosynthesis - Strigolactone as An Example
职业:利用微生物生物生产平台阐明植物化学生物合成——以独脚金内酯为例
  • 批准号:
    2420331
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Decoding functional glycan biosynthesis
解码功能性聚糖生物合成
  • 批准号:
    BB/Y000102/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Investigating biosynthesis of the newly discovered natural product euglenatide and distribution across the breadth of Euglenoid algae
研究新发现的天然产物眼虫肽的生物合成及其在眼虫类藻类中的分布
  • 批准号:
    EP/Y003314/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Greatwall in replication stress/DNA damage responses and oral cancer resistance
长城在复制应激/DNA损伤反应和口腔癌抵抗中的作用
  • 批准号:
    10991546
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Understanding how exocrine-derived signals promote beta cell growth
了解外分泌信号如何促进 β 细胞生长
  • 批准号:
    10750765
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Discovery and reconstitution of securinine alkaloid biosynthesis
叶秋碱生物碱生物合成的发现和重建
  • 批准号:
    BB/Y003586/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Cross talk between DNA replication and LPS biosynthesis during cell growth
细胞生长过程中 DNA 复制和 LPS 生物合成之间的串扰
  • 批准号:
    BB/Y001265/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
RUI: BIOPOLYMER - BIObricks POLYketide Metabolic EngineeRing platform for unraveling the biosynthesis of higher anthracyclines
RUI:BIOPOLYMER - BIObricks 聚酮化合物代谢工程平台,用于揭示高级蒽环类药物的生物合成
  • 批准号:
    2321976
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
  • 批准号:
    480022
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Molecular mechanisms of Pel biosynthesis
Pel生物合成的分子机制
  • 批准号:
    489549
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了