Research on well-posedness for the Navier-Stokes equations

纳维-斯托克斯方程的适定性研究

基本信息

项目摘要

In a domain Ω⊂R^n, consider a weak solution u of the Navier-Stokes equations in the class u∈L^∞ (0, T ; L^n (Ω)). If lim sup_<t-t_*-0>‖u (t) ‖^n_n-‖u (t_*) ‖^n_n is small at each point of t_*∈ (0, T), then u is regular on Ω^^-× (0, T). As an application, we give a precise characterization of the singular time, i.e., we show that if a solution u of the Navier-Stokes equations is initially smooth and loses its regularity at some later time T_*<T, then either lim sup_<t-T_*-0>‖u (t) ‖_<L^n (Ω) >= +∞, or u (t) oscillates in L^n (Ω) around the weak limit w-lim_<t-T_*-0>u (t) with sufficiently large amplitude. Furthermore, we prove that every weak solution u of bounded variation on (0, T) with values in L^n (Ω) becomes regular.Consider the nonstationary Navier-Stokes equations in Ω× (0, T), where Ω is a domain in R^3. We show that there is an absolute constant ε_0 such that every weak solution u with the property sup_<t∈ (a, b) >‖u (t) ‖^3_W (D) 【less than or equal】ε_0 is necessarily of class C^∞ in the space-time variables on any compact subset of D× (a, b), where D ⊂⊂Ω and 0<a<b<T.As an application, we prove that if the weak solution u behaves around (x_0, t_0) ∈Ω× (0, T) like u (x, t) =o (|x-x_0|^<-1>) as x→x_0 uniformly in t in some neighborhood of t_0, then (x_0, t_0) is a removable singularity of u.Consider weak solutions w of the Navier-Stokes equations in Serrin's classw∈L^α (0, ∞ ; L^q (Ω)) for 2/α + 3/q = 1 with 3<q【less than or equal】∞,where Ω is a general unbounded domain in R^3. We shall show that although the inital and exteral disturbances from w are large, every perturbed flow u with the energy inequality converges asymptotically to w as‖υ (t) -w (t) ‖_<L^2 (Ω) >→0, ‖▽υ(t) -▽w (t) ‖_<L^2 (Ω) >=O (t^<-1/2>) as t→∞.
在区域Ω <$R^n中,考虑Navier-Stokes方程的弱解u∈L^∞(0,T ; L^n(Ω)).如果limsup_<t-t_*-0><$u(t)<$^n-<$u(t_*)<$^n_n在t_*∈(0,T)的每一点都很小,则u在Ω^^-×(0,T)上正则.作为应用,我们给出了奇异时间的精确刻画,即,我们证明了如果Navier-Stokes方程的解u在初始时是光滑的,并且在以后的某个时刻T_*<T时失去了正则性,那么要么lim_<t-T_*-0> u(t)= +∞,要么u(t)在L^n(Ω)中以足够大的振幅围绕弱极限w-lim_<t-T_*-0>u(t)振荡.进一步证明了(0,T)上有界变差的弱解u在L^n(Ω)中是正则的.考虑Ω×(0,T)中的非定常Navier-Stokes方程,其中Ω是R^3中的一个区域.本文证明了存在一个绝对常数ε_0,使得在D×(a,B)的任一紧致子集上的时空变量中,具有性质sup_&lt;t∈(a,B)&gt; ≠ Ω且0&lt;a&lt;B&lt;T。作为应用,我们证明了如果弱解u在(x_0,t_0)∈Ω×(0,T)如u(x,t)=o(|x-x_0|当<-1>x→x_0在t_0的某个邻域内在t内一致时,则(x_0,t_0)是u的可去奇点.考虑Serrin类Navier-Stokes方程w ∈L^α(0,∞ ; L^q(Ω)),其中2/α + 3/q = 1,3&lt;q[小于或等于]∞,Ω是R^3中的一般无界区域.我们将证明,尽管来自w的初始扰动和外部扰动都很大,但当ω(t)-w(t)ω_&lt;L^2(Ω)&gt;→0时,每个满足能量不等式的扰动流u都渐近收敛于w,当t→∞时,ω(t)-ω w(t)ω_&lt;L^2(Ω)&gt;=O(t^&lt;-1/2&gt;).

项目成果

期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
KOZONO,H.,YAMAZAKI,M: "On a larger class of Stable Solutions to the Navia-Stokes equations in exterive domanins"Math.Z.. 228. 751-785 (1998)
KOZONO,H.,YAMAZAKI,M:“关于外域中 Navia-Stokes 方程的一大类稳定解”Math.Z.. 228. 751-785 (1998)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
KOZONO,H.,Shibata,Y.: "Recent Topics on Mathematical Theory of Viscous Incom Flujd" 紀伊國屋書店, 270 (1998)
KOZONO, H., Shibata, Y.:“粘性流体数学理论的最新话题”纪伊国屋书店,270(1998)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kozono,H.: "Representation formula,net force and energy relation to the stationcry Novier-Stokes eqations in 3-dimensional exterior domains" Kyusyu J.Math.51. 239-260 (1997)
Kozono,H.:“3 维外部域中平稳诺维埃-斯托克斯方程的表示公式、净力和能量关系”Kyusyu J.Math.51。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kozono, H.: "Removable singularities of weak solutions to the Navier-Stokes equations"Communications in Partial Differential Equations. 23. 949-966 (1998)
Kozono, H.:“纳维-斯托克斯方程弱解的可去除奇点”偏微分方程中的通信。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
KOZONO,H.: "Remorable sinynlarity of weak solutions to the Navier-Stokes equations" Communications in Partial Differential Equetion. 23. 949-966 (1998)
KOZONO,H.:“纳维-斯托克斯方程弱解的令人震惊的sinynlarity”偏微分方程中的通信。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOZONO Hideo其他文献

KOZONO Hideo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOZONO Hideo', 18)}}的其他基金

New development of the theory on turbulence via method of nonlinear partial differential equations
非线性偏微分方程法湍流理论的新发展
  • 批准号:
    24654032
  • 财政年份:
    2012
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Theory of global well-posedness on the nonlinear partial differential equations
非线性偏微分方程的全局适定性理论
  • 批准号:
    20224013
  • 财政年份:
    2008
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
United theory of existence of global solution and its asymptotic behavior to the nonlinear partial differential equations
非线性偏微分方程全局解的存在性及其渐近行为的联合理论
  • 批准号:
    15104001
  • 财政年份:
    2003
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了