United theory of existence of global solution and its asymptotic behavior to the nonlinear partial differential equations
非线性偏微分方程全局解的存在性及其渐近行为的联合理论
基本信息
- 批准号:15104001
- 负责人:
- 金额:$ 50.75万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (S)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Constructions of very weak solutions of the Navier-Stokes equations in exterior domains.We show the unique existence of local very weak solutions to the prescribed non-homogeneous boundary data which belong to the larger class than the usual trace class. Our solutions satisfy the Serrin condition which implies the scaling invariant class.2. New regularity criterion on weak solutions of the Navier-Stokes equations.We prove that every turbulent solution which is α-Hoelder continuous in the kinetic energy in the time interval with α>1/2 necessarily regular.3. Helmholtz-Weyl de composition in unbounded domains with non-compact boundaries of uniformly C^2-class.Despite of a counter example of valiclity of the Helmholtz-Weyl decomposition in L^r, we introduce the space of sum and intersection of L^r and prove the Helmholtz-Weyl decomposition in such spaces. As an application, we can define the Stokes operator.
1.在外部区域上构造Navier-Stokes方程的很弱解.对于给定的非齐次边界数据,我们证明了局部很弱解的唯一存在性,这些解属于比通常的迹类更大的一类.我们的解决方案满足Serrin条件,这意味着标度不变类。给出了Navier-Stokes方程弱解的新的正则性判据,证明了在α>1/2的时间区间内,在动能上α-Hoelder连续的湍流解必然是正则的.本文讨论了具有一致C^2-类非紧边界的无界域上的Helmholtz-Weyl de复合,给出了Helmholtz-Weyl分解在L^r中有效性的反例,引入了L^r的和交空间,证明了Helmholtz-Weyl分解在这类空间中的有效性。作为应用,我们可以定义Stokes算子。
项目成果
期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Liouville property and quasiconvergence for a semilinear heat equation
- DOI:10.1016/j.jde.2003.10.019
- 发表时间:2005
- 期刊:
- 影响因子:2.4
- 作者:P. Polácik;E. Yanagida
- 通讯作者:P. Polácik;E. Yanagida
Damped wave equation with a critical nonlinearity
- DOI:10.1090/s0002-9947-05-03818-3
- 发表时间:2005-04
- 期刊:
- 影响因子:1.3
- 作者:N. Hayashi;E. Kaikina;P. Naumkin
- 通讯作者:N. Hayashi;E. Kaikina;P. Naumkin
Method of the distance function to the Bence-Merriman-Osher algorithm for motion by mean curvature
Bence-Merriman-Osher 平均曲率运动算法的距离函数方法
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Yoko GOTO;Katsuyuki ISHII;Takayoshi OGAWA
- 通讯作者:Takayoshi OGAWA
Kozono, H., Yatsu, N.: "Extension criterion via two-components of vorticity on strong solutions to the 3D Navier-Stokes equations"Math.Z.. 246. 55-68 (2004)
Kozono, H.、Yatsu, N.:“通过涡量的两个分量对 3D 纳维-斯托克斯方程的强解进行扩展准则”Math.Z.. 246. 55-68 (2004)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Bilinear estimates in homogeneous Triebel‐Lizorkin spaces and the Navier‐Stokes equations
- DOI:10.1002/mana.200310213
- 发表时间:2004-10
- 期刊:
- 影响因子:1
- 作者:H. Kozono;Yukihiro Shimada
- 通讯作者:H. Kozono;Yukihiro Shimada
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOZONO Hideo其他文献
KOZONO Hideo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOZONO Hideo', 18)}}的其他基金
New development of the theory on turbulence via method of nonlinear partial differential equations
非线性偏微分方程法湍流理论的新发展
- 批准号:
24654032 - 财政年份:2012
- 资助金额:
$ 50.75万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Theory of global well-posedness on the nonlinear partial differential equations
非线性偏微分方程的全局适定性理论
- 批准号:
20224013 - 财政年份:2008
- 资助金额:
$ 50.75万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Research on well-posedness for the Navier-Stokes equations
纳维-斯托克斯方程的适定性研究
- 批准号:
09440056 - 财政年份:1997
- 资助金额:
$ 50.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B).