Asymptotic estimates of oscillatory integrals on abstract Wiener space
抽象维纳空间上振荡积分的渐近估计
基本信息
- 批准号:10440043
- 负责人:
- 金额:$ 7.81万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B).
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
On the subject of stochastic oscillatory integrals, Manabe has studied the expectation of Feynman-Kac type having quadratic Brownian functional as its phase function and calculated its exact form (joint work with Ikeda and Kusuoka). Kotani has studied random media extensively. In his study, there appears the expectation of Feynman-Kac type as probabilistic representation of Green function. we found almost one-to-one correspondence between them. This correspondence will promise further progress.Concerning another fields of interests related with stochastic analysis of Wiener space, we mention precise study of Brownian motion, relation with gauge theory and value distribution theory of holomorphic mapping, following results are obtained : Kotani-Isozaki have a result concerning probability distribution of some Brownian functional. Mitoma and Shigekaw obtained some results in the fields of gauge theory and loop group. Atsuji obtained some results concerning holomorphic mapping and holomourphic diffusion on Kaehler manifold.Other activities : We invited professors J.Bertoin and B.Ryabko for discussing related topics. We have formed exchange program between our Math.department and the probability group of University of Pais 6.
在随机振荡积分方面,Manabe 研究了以二次布朗泛函为相函数的 Feynman-Kac 型期望,并计算了其精确形式(与 Ikeda 和 Kusuoka 共同工作)。小谷对随机媒体进行了广泛的研究。在他的研究中,出现了 Feynman-Kac 类型作为格林函数的概率表示的期望。我们发现他们之间几乎是一一对应的。这一通信将有望取得进一步的进展。关于与维纳空间随机分析相关的另一个兴趣领域,我们提到了布朗运动的精确研究、与规范理论的关系以及全纯映射的值分布理论,得到了以下结果: Kotani-Isozaki 得到了有关某些布朗泛函概率分布的结果。 Mitoma和Shigekaw在规范理论和环群领域取得了一些成果。 Atsuji在Kaehler流形上的全纯映射和全纯扩散方面取得了一些成果。其他活动:我们邀请了J.Bertoin和B.Ryabko教授来讨论相关话题。我们的数学系与佩斯第六大学概率组之间建立了交换项目。
项目成果
期刊论文数量(48)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Isozaki and S.Kotani: "Asymptotic estimates for the first hitting time of fluctuating additive functionals of Brownian motion"Seminaire de Probabilites 34 (Lecture Notes in Mathematics). 374-387 (2000)
Y.Isozaki 和 S.Kotani:“布朗运动波动加性泛函第一次击中时间的渐近估计”Seminaire de Probabilites 34(数学讲义)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Isozaki and S.Kotani: "Asymptotic estimates for the first hitting time of fluctuating additive functionals of Brownian motion"Seminaire de Protabilite's 34 (Lecture Notes in Mathematics). 374-387 (2000)
Y.Isozaki 和 S.Kotani:“布朗运动波动加性泛函的第一次命中时间的渐近估计”Seminaire de Protabilites 34(数学讲义)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Atsuji: "A Casorati-Weierstrass theorem for holomorphic maps and invariants-fields of holomorphic diffusions"Bull.Sci.math.. 123. 371-383 (1999)
A.Atsuji:“全纯映射和全纯扩散不变量场的 Casorati-Weierstrass 定理”Bull.Sci.math.. 123. 371-383 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Atsuji: "Remarks on harmonic maps into a cone from stochastically complete manifolds"Proc.Japan.Acad.. 75. 105-108 (1999)
A.Atsuji:“关于从随机完备流形到圆锥的调和映射的评论”Proc.Japan.Acad.. 75. 105-108 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Isozaki: "A cluster of sets of exceptional times of linear Brownian motion"Osaka J.Math.. (2001)
Y.Isozaki:“线性布朗运动的异常时间的一组簇”Osaka J.Math..(2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MANABE Shojiro其他文献
MANABE Shojiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
- 批准号:
23K03139 - 财政年份:2023
- 资助金额:
$ 7.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spectral theory of Schrodinger forms and Stochastic analysis for weighted Markov processes
薛定谔形式的谱论和加权马尔可夫过程的随机分析
- 批准号:
23K03152 - 财政年份:2023
- 资助金额:
$ 7.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Three Topics in Stochastic Analysis: Kyle's model, Systems of BSDEs and Superrough volatility
随机分析的三个主题:凯尔模型、倒向随机微分方程系统和超粗糙波动性
- 批准号:
2307729 - 财政年份:2023
- 资助金额:
$ 7.81万 - 项目类别:
Standard Grant
Conference: Workshop on Stochastic Analysis, Random Fields, and Applications
会议:随机分析、随机场和应用研讨会
- 批准号:
2309847 - 财政年份:2023
- 资助金额:
$ 7.81万 - 项目类别:
Standard Grant
Conference: Frontiers in Stochastic Analysis
会议:随机分析前沿
- 批准号:
2247369 - 财政年份:2023
- 资助金额:
$ 7.81万 - 项目类别:
Standard Grant
Applications of stochastic analysis to statistical inference for stationary and non-stationary Gaussian processes
随机分析在平稳和非平稳高斯过程统计推断中的应用
- 批准号:
2311306 - 财政年份:2023
- 资助金额:
$ 7.81万 - 项目类别:
Standard Grant
Interactions in Queues: A Stochastic Analysis
队列中的交互:随机分析
- 批准号:
2206286 - 财政年份:2022
- 资助金额:
$ 7.81万 - 项目类别:
Standard Grant
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
- 批准号:
RGPIN-2018-04394 - 财政年份:2022
- 资助金额:
$ 7.81万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Processes and Stochastic Analysis on Disordered Media
无序介质的随机过程和随机分析
- 批准号:
22H00099 - 财政年份:2022
- 资助金额:
$ 7.81万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Stochastic Analysis of Sea-Surface Wind Probability Distribution Modulations by Tropical Modes of Large-Scale Climate Variability
大尺度气候变率热带模态对海面风概率分布调制的随机分析
- 批准号:
575569-2022 - 财政年份:2022
- 资助金额:
$ 7.81万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's