Three Topics in Stochastic Analysis: Kyle's model, Systems of BSDEs and Superrough volatility
随机分析的三个主题:凯尔模型、倒向随机微分方程系统和超粗糙波动性
基本信息
- 批准号:2307729
- 负责人:
- 金额:$ 44.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research project contains three separate but related avenues of inquiry. All three of them are either inspired by or are related to practical questions arising from finance and economics. The first project focuses on a class of models, known as Kyle models, which describe how information is exchanged among participants in a financial market. These models can be used, for example, to detect insider trading. The second project focuses on a class of equations, known as Backward Stochastic Differential Equations, to better understand strategic behavior of agents in a wide range of competitive environments. Finally, the third project aims to understand the dynamics and the nature of the kinds of random fluctuations one often observes in financial market volatility. Finally, the project will have a significant impact on education and training, not only through the improvement of advising and teaching at the PI's own institution, but also through national and international dissemination of the produced research findings and knowledge.The first project concerning Kyle modeling focuses on the recent work of the PI and his collaborators, where "noise trading" with stochastic volatility was studied. The PI plans to extend these results in various directions, such as the introduction of several assets, the study of the relationship with an intriguing optimization problem, and an investigation of a related nonstandard decomposition problem for stochastic processes. The second project will tackle several problems related to the existence and uniqueness of solutions for systems of nonlinear, fully-coupled, Backward Stochastic Differential Equations. In particular, the PI plans to continue this study and focus on the non-Markovian case using methods based on past results on the so-called "submartingale" characterization as well as on linear systems with BMO-coefficients. The third project will study the limiting theory for a class of point processes, known as Hawkes processes, in the "nearly unstable" regime. The PI and his students will be particularly interested in the class where the self-excitation has a "long tail". It is expected that the limits of such processes will belong to a new class of random fields, related to log-correlated Gaussian random fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究项目包含三个独立但相关的调查途径。这三个问题都是由金融和经济学产生的实际问题所启发的,或者与之相关。第一个项目的重点是一类模型,称为凯尔模型,它描述了如何在金融市场的参与者之间交换信息。例如,这些模型可用于检测内幕交易。第二个项目的重点是一类方程,称为倒向随机微分方程,以更好地了解在广泛的竞争环境中的代理商的战略行为。最后,第三个项目旨在了解人们在金融市场波动中经常观察到的各种随机波动的动态和性质。最后,该项目将对教育和培训产生重大影响,不仅通过改进PI自己机构的咨询和教学,而且通过在国内和国际上传播所产生的研究成果和知识。第一个项目涉及凯尔建模,重点是PI及其合作者最近的工作,研究了随机波动的“噪声交易”。PI计划将这些结果扩展到各个方向,例如引入几种资产,研究与一个有趣的优化问题的关系,以及调查相关的非标准随机过程分解问题。第二个专题将解决几个与非线性、完全耦合、倒向随机微分方程系统解的存在性和唯一性有关的问题。特别是,PI计划继续这项研究,并专注于非马尔可夫的情况下,使用的方法的基础上,过去的结果,所谓的“下鞅”的特征,以及与BMO系数的线性系统。第三个项目将研究一类点过程的极限理论,称为霍克斯过程,在“几乎不稳定”的制度。PI和他的学生会对自激具有“长尾”的类特别感兴趣。预计此类过程的极限将属于一类新的随机场,与对数相关的高斯随机场相关。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的评估被认为值得支持影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gordan Zitkovic其他文献
J un 2 00 7 Optimal Investment with an Unbounded Random Endowment and Utility-Based Pricing Methods
Jun 2 00 7 无界随机禀赋和基于效用的定价方法的最优投资
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
M. Owen;Gordan Zitkovic - 通讯作者:
Gordan Zitkovic
Financial equilibria in the semimartingale setting: Complete markets and markets with withdrawal constraints
半鞅设定下的金融均衡:完全市场和有撤回限制的市场
- DOI:
10.1007/s00780-005-0175-6 - 发表时间:
2007 - 期刊:
- 影响因子:1.7
- 作者:
Gordan Zitkovic - 通讯作者:
Gordan Zitkovic
ON AGENT’S AGREEMENT AND PARTIAL‐EQUILIBRIUM PRICING IN INCOMPLETE MARKETS
不完全市场下的代理协议与部分均衡定价
- DOI:
10.1111/j.1467-9965.2010.00405.x - 发表时间:
2008 - 期刊:
- 影响因子:1.6
- 作者:
Michail Anthropelos;Gordan Zitkovic - 通讯作者:
Gordan Zitkovic
Convex compactness and its applications
- DOI:
10.1007/s11579-010-0024-z - 发表时间:
2007-09 - 期刊:
- 影响因子:1.6
- 作者:
Gordan Zitkovic - 通讯作者:
Gordan Zitkovic
Dynamic Programming for Controlled Markov Families: Abstractly and over Martingale Measures
- DOI:
10.1137/130926481 - 发表时间:
2013-07 - 期刊:
- 影响因子:0
- 作者:
Gordan Zitkovic - 通讯作者:
Gordan Zitkovic
Gordan Zitkovic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gordan Zitkovic', 18)}}的其他基金
Systems of Backward Stochastic Differential Equations and Applications in Stochastic Financial Equilibrium Theory
后向随机微分方程组及其在随机金融均衡理论中的应用
- 批准号:
1815017 - 财政年份:2018
- 资助金额:
$ 44.13万 - 项目类别:
Standard Grant
Stochastic Equilibria and Related Topics in Financial Mathematics
随机均衡及金融数学中的相关主题
- 批准号:
1516165 - 财政年份:2015
- 资助金额:
$ 44.13万 - 项目类别:
Standard Grant
CAREER: Equilibria and Stability in Financial Markets
职业:金融市场的均衡与稳定
- 批准号:
0955614 - 财政年份:2010
- 资助金额:
$ 44.13万 - 项目类别:
Continuing Grant
AMC-SS: Stochastic Modeling and Methods in Financial Equilibrium Theory
AMC-SS:金融均衡理论中的随机建模和方法
- 批准号:
0706947 - 财政年份:2007
- 资助金额:
$ 44.13万 - 项目类别:
Standard Grant
相似海外基金
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
- 批准号:
RGPIN-2018-04746 - 财政年份:2022
- 资助金额:
$ 44.13万 - 项目类别:
Discovery Grants Program - Individual
Topics in Smooth Ergodic Theory: Stochastic Properties, Thermodynamic Formalism, Coexistence
平滑遍历理论主题:随机性质、热力学形式主义、共存
- 批准号:
2153053 - 财政年份:2022
- 资助金额:
$ 44.13万 - 项目类别:
Standard Grant
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
- 批准号:
RGPIN-2018-04746 - 财政年份:2021
- 资助金额:
$ 44.13万 - 项目类别:
Discovery Grants Program - Individual
Topics in Stochastic Control: Finance, Epidemics, and Machine Learning
随机控制主题:金融、流行病和机器学习
- 批准号:
2109002 - 财政年份:2021
- 资助金额:
$ 44.13万 - 项目类别:
Standard Grant
Time-inconsistent stochastic control problems and related topics
时间不一致随机控制问题及相关主题
- 批准号:
21J00460 - 财政年份:2021
- 资助金额:
$ 44.13万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
- 批准号:
RGPIN-2018-04746 - 财政年份:2020
- 资助金额:
$ 44.13万 - 项目类别:
Discovery Grants Program - Individual
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
- 批准号:
RGPIN-2018-04746 - 财政年份:2019
- 资助金额:
$ 44.13万 - 项目类别:
Discovery Grants Program - Individual
Topics in Stochastic Control and Games Motivated by Finance
金融驱动的随机控制和博弈主题
- 批准号:
1908903 - 财政年份:2019
- 资助金额:
$ 44.13万 - 项目类别:
Standard Grant
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
- 批准号:
RGPIN-2018-04746 - 财政年份:2018
- 资助金额:
$ 44.13万 - 项目类别:
Discovery Grants Program - Individual
Topics in stochastic analysis and Malliavin calculus
随机分析和 Malliavin 微积分主题
- 批准号:
1734183 - 财政年份:2016
- 资助金额:
$ 44.13万 - 项目类别:
Standard Grant