Application of Shintani descent to the perfect isometry problem and Dade's conjecture
Shintani下降在完美等距问题中的应用及Dade猜想
基本信息
- 批准号:11440008
- 负责人:
- 金额:$ 7.49万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. For block algebras of Chevalley groups of type G, having an extra special group of order 27 as defect groups, or of projective special linear groups or special unitary groups, having an.elementary abelian group of order 9 as defect groups, we have shown that Broue conjecture holds, namely, that there exists a derived equivalence between the block algebra and its Brauer correspondent. This result implies that there exists a perfect isometry between them, and moreover that Dade's conjecture is true.In the situations above, the stabilizers of an automorphism induced from those of the denning fields are again Chevalley groups of the same type. The derived equivalences, and thus perfect isometries are shown to be compatible with taking the stabilizers. In other words, they are compatible with the Shintani descent. Moreover, we have proved that for general linear groups, local blocks are Morita equivalent and it is also compatible with Shintani descent.2. For syinplectic groups of small rank, we have proved that the invariant form of Dade's conjecture is true. However, we have not checked that it is compatible with Shintani descent.3. Meanwhile, Isaacs and Navarro proposed a conjecture. We have discussed the relationship between it and perfect isometries and Dade's conjecture, and finally proposed a new conjecture which includes all of them. For the sporadic simple groups of Lyons and Thompson, it is shown that the new conjecture is true. It is certainly necessary to study the new conjecture more.
1. 对于具有 27 阶额外特殊群作为缺陷群的 G 型 Chevalley 群的分块代数,或者具有 9 阶基本阿贝尔群作为缺陷群的射影特殊线性群或特殊酉群,我们证明了布劳猜想成立,即分块代数与其布劳尔对应者之间存在导出的等价性。这个结果意味着它们之间存在完美的等距,而且Dade的猜想是正确的。 在上述情况中,由丹宁场导出的自同构的稳定子又是同一类型的Chevalley群。推导的等价性和完美的等距性被证明与服用稳定剂是兼容的。换句话说,他们与新谷血统兼容。此外,我们还证明了对于一般线性群,局部块是森田等价的,并且也与新谷血统兼容。 2.对于小阶辛群,我们证明了戴德猜想的不变形式是正确的。然而,我们还没有检查它是否与 Shintani 血统兼容。3。与此同时,艾萨克斯和纳瓦罗提出了一个猜想。我们讨论了它与完美等距和戴德猜想的关系,并最终提出了一个包含所有这些猜想的新猜想。对于 Lyons 和 Thompson 的零星简群,证明了新猜想是正确的。当然有必要对新猜想进行更多的研究。
项目成果
期刊论文数量(58)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shigeo Koshitani,Hyoe Miyachi: "The principal 3-blocks of four- and five-dimensional projective Special linear groups in non-defining characteristic"J.Algebra. 226. 788-806 (2000)
Shigeo Koshitani,Hyoe Miyachi:“四维和五维射影特殊线性群的主要 3 块非定义特征”J.代数。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Atumi Watanabe: "The Glauberman character correspondence and perfect isometries for blocks of finite groups"Journal of Algebra. 216. 548-565 (1999)
Atumi Watanabe:“有限群块的格劳伯曼字符对应和完美等距”代数杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Noriaki Kauanaka: "A q-Canchy identity for Schur functions and complex reflection groups "Osaka J.Math. (発表予定).
Noriaki Kauanaka:“Schur 函数和复杂反射群的 q-Canchy 恒等式”Osaka J.Math(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yoko Usami: "Principal blocks with extra-special defect groups of order 27"Advances in Pure Mathematics. 32. 413-421 (2001)
Yoko Usami:“具有 27 阶超特殊缺陷群的主块”纯数学进展。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Noriaki,Kawanaka: "A q-series identity involving Schar functions and related topics"Osaka Journal Math.. 36・1. 157-176 (1999)
Noriaki, Kawanaka:“涉及 Schar 函数和相关主题的 q 级数恒等式”Osaka Journal Math.. 36・1(1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UNO Katsuhiro其他文献
UNO Katsuhiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UNO Katsuhiro', 18)}}的其他基金
Structure of the derived categories of block algebras with non-commutative defect groups
具有非交换缺陷群的分块代数的派生范畴的结构
- 批准号:
18540031 - 财政年份:2006
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of Cohomology groups and Shintani descent to Broue's conjecture
上同调群和 Shintani 下降在 Broue 猜想中的应用
- 批准号:
14340012 - 财政年份:2002
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




