Stability of solution and reconstruction in inverse problems

反问题解和重构的稳定性

基本信息

  • 批准号:
    11440025
  • 负责人:
  • 金额:
    $ 7.55万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2001
  • 项目状态:
    已结题

项目摘要

This project aims at mathematical analysis and numerical analysis based on the mathematical analysis for inverse problems in applied sciences, Moreover we have studied related problems in applications, from the viewpoint of inverse problems, and prepared possible numerical methods.We conclude that by this project, we have established satisfactory theoretical results. Moreover, as for the development of numerical methods on the basis of the theoretical aspects, several methods have been proposed and tested for numerical examples. Still we have not compared the numerical results with real data directly from the real worlds such as works or plants. Therefore the continuation of this kind of projects are strongly demanded.For researches of related problems with inverse problems, the participants have achieved remarkable results by their own specialities.We have held several surveys concerning inverse problems by foreign researchers and taken part in international conferences on inverse problems for presenting the outputs of this project.With results obtained by this project, M. Yamamoto et al. have published a monograph on the mathematics and the numerical methods of inverse problems.Onishi, Tosaka, Iso, Kawarada, Miyoshi, Kimura, Ushijima and Kako have worked for inverse problems and related problems in applied sciences, from numerical points of view. Nakamura, Saitoh, Ikehata, Tanuma, Kubo have worked for theoretical aspects of inverse problems.
本课题以应用科学中逆问题的数学分析为基础进行数学分析和数值分析,并从逆问题的角度对应用中的相关问题进行了研究,准备了可能的数值方法,得出了满意的理论结果。此外,对于数值方法在理论方面的发展,提出了几种方法,并进行了数值算例验证。尽管如此,我们还没有将数值结果与直接来自真实世界的真实数据进行比较,例如作品或植物。对于与逆问题相关的问题的研究,参与者凭借各自的专长取得了显著的成果。我们多次举办关于反问题的外国研究人员的调查,并参加了国际反问题会议,以展示该项目的成果。出版了一部关于反问题的数学和数值方法的专著。Onishi、Tosaka、Iso、Kawa ada、Miyoshi、Kimura、Ushijima和Kako从数值的角度研究了应用科学中的反问题和相关问题。中村、齐藤、池田、田间、久保都致力于反问题的理论方面的工作。

项目成果

期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bruckner,G.,Yamamoto M.: "On a noisy operator equation and the identification of point sources"ZAMM Z.Angew.Math.Mech. 80. 377-388 (2000)
布鲁克纳,G.,山本 M.:“关于噪声算子方程和点源的识别”ZAMM Z.Angew.Math.Mech。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
TOSAKA, N., ONISHI, K. and YAMAMOTO, M.: "Mathematics and Solutions of Inverse Problems"Tokyo Daigaku Syuppan Kai.. (1999)
TOSAKA, N.、Onishi, K. 和 YAMAMOTO, M.:“数学和反问题的解决方案”东京大学 Syuppan Kai..(1999 年)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
GORENFLO, R., YAMAMOTO, M.: "Operator theoretical approach of linear Abel integral equations of first kind"Japan J. Indutrial Appl. Math.. 16. 137-161 (1999)
GORENFLO, R., YAMAMOTO, M.:“第一类线性阿贝尔积分方程的算子理论方法”日本工业应用杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
G. Bruckner: "On an operator equation with noise in the operator and the right-hand side with application to an inverse vibration problem"Z. Angewandte Math. Mech.. (発表予定).
G. Bruckner:“关于算子和右侧带有噪声的算子方程及其在逆振动问题中的应用”Z. Angewandte Math..(即将介绍)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Cheng,J.,Yamamoto,M.: "One New strategy for a priori choice of regularizing parameters in Tikhonov's regularization"Inverse Problems. 16. L31-L38 (2000)
Cheng,J.,Yamamoto,M.:“吉洪诺夫正则化中先验选择正则化参数的一种新策略”反问题。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMAMOTO Masahiro其他文献

Immune evasion mechanisms of the zoonotic protozoan parasite Toxoplasma gondii in mammalian hosts.
哺乳动物宿主中人畜共患原生动物寄生虫弓形虫的免疫逃避机制。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    BANDO Hironori;FUKUDA Yasuhiro;YAMAMOTO Masahiro;KATO Kentaro
  • 通讯作者:
    KATO Kentaro

YAMAMOTO Masahiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMAMOTO Masahiro', 18)}}的其他基金

An analisys on the division of roles between substantive and "procedural" review of the legislative discretion.
立法自由裁量权实质审查与“程序”审查的角色分工分析
  • 批准号:
    18K12633
  • 财政年份:
    2018
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Pathogenic and genetic analysis of Toxoplasma by Japan, China and South Korea
日本、中国、韩国弓形虫病原及遗传分析
  • 批准号:
    18KK0226
  • 财政年份:
    2018
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
A Study in the Organizational Process of Capital Investment and M&A
资本投资与管理的组织过程研究
  • 批准号:
    17K04074
  • 财政年份:
    2017
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reproduction of prebiotic metabolic pathways with deep-sea hydrothermal electricity
利用深海热液电再现益生元代谢途径
  • 批准号:
    16K05625
  • 财政年份:
    2016
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Basic research on vacuum gap insulation for ultra-high voltage devices
特高压器件真空间隙绝缘基础研究
  • 批准号:
    16K05385
  • 财政年份:
    2016
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Deep-sea hydrothermal electricity elucidates origin of life: Proposal of Electro-Iron-Sulfur World theory
深海热液电阐明生命起源:电铁硫世界理论的提出
  • 批准号:
    26610188
  • 财政年份:
    2014
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Development of the in vitro maintenance system for undifferentiated stem cells using Toxoplasma ROP16
利用弓形虫 ROP16 开发未分化干细胞体外维持系统
  • 批准号:
    25670201
  • 财政年份:
    2013
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Mathematical studies for diffusion of contaminants
污染物扩散的数学研究
  • 批准号:
    23654030
  • 财政年份:
    2011
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
'Environmental Electric Ecosystem', a novel biomass production system
新型生物质生产系统“环境电力生态系统”
  • 批准号:
    23760797
  • 财政年份:
    2011
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Elucidation of novel innate immune system by analysis of host-parasite interaction
通过分析宿主-寄生虫相互作用阐明新型先天免疫系统
  • 批准号:
    23689029
  • 财政年份:
    2011
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)

相似海外基金

Development of inverse problem analysis for internal damage of materials using data assimilation
利用数据同化开发材料内部损伤反问题分析
  • 批准号:
    23K17336
  • 财政年份:
    2023
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Inverse problem theory for innovation of detection methods
检测方法创新的反问题理论
  • 批准号:
    23KK0049
  • 财政年份:
    2023
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
3D tracking system for micro magnetization vector realized by inverse problem algorithm
反问题算法实现的微磁化矢量3D跟踪系统
  • 批准号:
    22K04246
  • 财政年份:
    2022
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on inverse problem analysis of viscoelastic equations
粘弹性方程反问题分析研究
  • 批准号:
    22K03366
  • 财政年份:
    2022
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Lab-Data-Enabled Modeling, Numerical Methods, and Validation for a Three-Dimensional Interface Inverse Problem for Plasma-Material Interactions
协作研究:等离子体-材料相互作用的三维界面反问题的实验室数据建模、数值方法和验证
  • 批准号:
    2111039
  • 财政年份:
    2021
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Standard Grant
Development of typhoon ensemble forecasting system based on the source inverse problem of potential vorticity
基于位涡源反问题的台风集合预报系统研制
  • 批准号:
    21H01431
  • 财政年份:
    2021
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Lab-Data-Enabled Modeling, Numerical Methods, and Validation for a Three-Dimensional Interface Inverse Problem for Plasma-Material Interactions
协作研究:等离子体-材料相互作用的三维界面反问题的实验室数据建模、数值方法和验证
  • 批准号:
    2110833
  • 财政年份:
    2021
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Standard Grant
Damage mechanism analysis of third generation ultra-high strength steels using combining method of synchrotron X-ray and finite element simulation, and its extension to inverse problem analysis
同步辐射X射线与有限元模拟相结合的第三代超高强钢损伤机理分析及其反问题分析的推广
  • 批准号:
    20H02484
  • 财政年份:
    2020
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Simultaneous characterization of near-field nanoplasmonic structure and function using super-resolved far-field optics: Solving the Inverse Problem
使用超分辨远场光学同时表征近场纳米等离子体结构和功能:解决反演问题
  • 批准号:
    1808766
  • 财政年份:
    2018
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Standard Grant
Development of high-efficiency calculation method for solving inverse problem and singular value decomposition for each local area in image restoration processing
图像恢复处理中求解逆问题和各局部区域奇异值分解的高效计算方法的开发
  • 批准号:
    18K11351
  • 财政年份:
    2018
  • 资助金额:
    $ 7.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了