Classification of New and Used Bills by Acoustic Data Using Neural Networks
使用神经网络通过声学数据对新钞和旧钞进行分类
基本信息
- 批准号:11450155
- 负责人:
- 金额:$ 5.44万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B).
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project, we have proposed an approach to realize an intelligent classification of new and used bill money from acoustic data via banking machines when bills are passed in those machines by using neural networks. The present project is to synthesize an intelligent classifier system based on various types of neural networks. Especially, we have adopted here three kinds of neural networks which are a layered network by the error back-propagation algorithm, a self-organizing map network, and learning vector quantization networks. To complete the project study, we have adopted the following approach to synthesize those intelligent classification systems :(1) Feature Extraction of Acoustic Data from New and Used BillUsing spectrum and cepstrum data, we have extracted the specific features of acoustic data obtained from the new and used bill money. Then using the self-organizing map neural network, we have classified those data into two classes which mean new bill category and used bill category.(2) Optimization of Network Size by Genetic AlgorithmsTo enhance the generalization of the networks, we have applied the genetic algorithms to the layered neural networks and competitive learning networks such that the minimum cost could be obtained. Then we could reduce the network size as small as possible under some constraints.(3) Classification by Learning Vector QuantizationTo classify the acoustic data from new and used bills from the spectrum and cepstrum, we have trained the neural networks based on the learning vector quantization. Then we could obtain more than 90% classification results for test data set from real bills.(3) Hardware Implementation of the Proposed SystemTo speed up the computation of the proposed algorithm and reduce the cost, we have developed the hardware of the proposed system. Then we could realized cheep and high speed hardware system to achieve the specification of the bills classification.
在这个项目中,我们提出了一种方法来实现一个智能分类的新的和使用的钞票通过银行机的声音数据时,通过这些机器通过使用神经网络的法案。本计画是综合各种类型的类神经网路为基础的智慧型分类器系统。特别是,我们在这里采用了三种神经网络,这是一个分层网络的误差反向传播算法,自组织映射网络,学习矢量量化网络。为了完成本课题的研究,我们采用了以下方法来综合这些智能分类系统:(1)新旧票据声学数据的特征提取利用频谱和倒频谱数据,提取出新旧票据声学数据的特定特征。然后利用自组织映射神经网络将这些数据分为两类,即新票据类和旧票据类。(2)用遗传算法优化网络规模为了提高网络的泛化能力,我们将遗传算法应用于分层神经网络和竞争学习网络,以获得最小代价。然后我们可以在一定的约束条件下尽可能地减小网络的规模。(3)为了从频谱和倒频谱中对新旧钞票的声学数据进行分类,我们基于学习矢量量化训练了神经网络。对真实的票据的测试数据集,我们可以得到90%以上的分类结果。(3)系统的硬件实现为了加快算法的运算速度和降低成本,我们开发了系统的硬件。实现了低成本、高速度的硬件系统,达到了票据分类的要求。
项目成果
期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yoshihide MORI: "Determination of Number of Neurons in the Hidden Layer for Function Approximation by Neural Networks"Transactions of SICE. Vol.35, No.12. 161-1624 (1999)
Yoshihide MORI:“Determination of Number of Neurons in the Hidden Layer for Function Approximation by Neural Networks”SICE 交易。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toshihisa KOSAKA: "Bill Money Classification of US Dollar by LVQ Method Using Reliability Measure"Transactions on IEE of Japan. Vol.119-C, No.11. 1359-1354 (1999)
Toshihisa KOSAKA:“使用可靠性度量的 LVQ 方法对美元进行票据货币分类”在日本 IEE 上的交易。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toshihisa KOSAKA: "Italian Liras Classification by Competitive Neural Networks"Transactions on IEE of Japan. Vol.119-C, No.8/9. 984-954 (1999)
Toshihisa KOSAKA:“通过竞争神经网络对意大利里拉进行分类”日本 IEE 上的交易。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
小坂利寿,竹谷紀和,大松繁: "競合型ニューラルネットワークによるイタリア紙幣の識別"電気学会論文誌C. 119-C・8/9. 948-954 (1999)
Toshihisa Kosaka、Norikazu Takeya、Shigeru Omatsu:“通过竞争神经网络识别意大利纸币”,日本电气工程师学会交易 C. 119-C,8/9 (1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Dongshik Kang,Sigeru Omatu and Michifumi Yoshioka: "New and Used Bills Classification Using Neural Networks"IEICE Trans. Fundamentals. E82-A・8. 1511-1516 (1999)
Dongshik Kang、Sigeru Omatu 和 Michifumi Yoshioka:“使用神经网络进行新旧票据分类”IEICE Trans 1511-1516。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OMATU Sigeru其他文献
OMATU Sigeru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OMATU Sigeru', 18)}}的其他基金
Development of a QCM Smell Measurement System for Intelligent Smell Information Processing and Application to Smell Information Processing
智能气味信息处理QCM气味测量系统的研制及其在气味信息处理中的应用
- 批准号:
22656089 - 财政年份:2010
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Sensory Evaluation Method by Intelligent Signal Processing with Both Acoustic and Image Information and Intelligent Classification of Bills
声图像信息智能信号处理与票据智能分类的感官评价方法
- 批准号:
20360178 - 财政年份:2008
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Intelligent Automation of Acoustic Classification Using Independent Component Analysis and Competitive Neural Nets
使用独立分量分析和竞争神经网络的声学分类智能自动化
- 批准号:
17360185 - 财政年份:2005
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Synthesis of Intelligent Learning Control Systems by Evolutionary Neural Networks
进化神经网络综合智能学习控制系统
- 批准号:
09450160 - 财政年份:1997
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Bill Money Classification for Intelligent OA Systems Using Evolutional Neural Networks
使用进化神经网络的智能 OA 系统的账单金额分类
- 批准号:
09555131 - 财政年份:1997
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Design of Neuro-Controller and its Application to Process Control
神经控制器的设计及其在过程控制中的应用
- 批准号:
05650405 - 财政年份:1993
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Environmental Evaluation of Seto Inland Sea by Remote Sensing
濑户内海环境遥感评价
- 批准号:
02302086 - 财政年份:1990
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
Fundamental Study on Adaptive Control Theory for Distributed Parameter System and its Application to Tempareture Control
分布式参数系统自适应控制理论基础研究及其在温度控制中的应用
- 批准号:
01550337 - 财政年份:1989
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Electrothermal iterative learning control and optimization of electric vehicle operation
电动汽车运行的电热迭代学习控制与优化
- 批准号:
23K03906 - 财政年份:2023
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Data-driven iterative learning control for continuous-time systems
连续时间系统的数据驱动迭代学习控制
- 批准号:
2891700 - 财政年份:2023
- 资助金额:
$ 5.44万 - 项目类别:
Studentship
CAREER: Distributionally Robust Learning, Control, and Benefits Analysis of Information Sharing for Connected and Autonomous Vehicles
职业:互联和自动驾驶车辆信息共享的分布式鲁棒学习、控制和效益分析
- 批准号:
2047354 - 财政年份:2021
- 资助金额:
$ 5.44万 - 项目类别:
Continuing Grant
Leveraging a Predictive Knowledge Base for Reinforcement Learning Control
利用预测知识库进行强化学习控制
- 批准号:
535280-2019 - 财政年份:2021
- 资助金额:
$ 5.44万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CAREER: Towards a Theory of Robust Learning & Control for Safety-Critical Autonomous Systems
职业生涯:迈向稳健学习理论
- 批准号:
2045834 - 财政年份:2021
- 资助金额:
$ 5.44万 - 项目类别:
Continuing Grant
CAREER: Toward Artificial General Intelligence for Complex Adaptive Systems: A Natural Concurrent “Learning-in-Learning” Control Paradigm
职业:走向复杂自适应系统的通用人工智能:自然并发“学习中学习”控制范式
- 批准号:
2047064 - 财政年份:2021
- 资助金额:
$ 5.44万 - 项目类别:
Continuing Grant
Connecting System Identification and Machine Learning for Achieving Both Performance and Generalization Capability in Iterative Learning Control
连接系统辨识和机器学习,实现迭代学习控制的性能和泛化能力
- 批准号:
21K14179 - 财政年份:2021
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CPS: Small: Data-Driven Reinforcement Learning Control of Large CPS Networks using Multi-Stage Hierarchical Decompositions
CPS:小型:使用多级分层分解对大型 CPS 网络进行数据驱动的强化学习控制
- 批准号:
1931932 - 财政年份:2020
- 资助金额:
$ 5.44万 - 项目类别:
Standard Grant
Leveraging a Predictive Knowledge Base for Reinforcement Learning Control
利用预测知识库进行强化学习控制
- 批准号:
535280-2019 - 财政年份:2020
- 资助金额:
$ 5.44万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Iterative Learning Control with Human-in-the-loop
人机交互的迭代学习控制
- 批准号:
2482288 - 财政年份:2020
- 资助金额:
$ 5.44万 - 项目类别:
Studentship