CPS: Small: Data-Driven Reinforcement Learning Control of Large CPS Networks using Multi-Stage Hierarchical Decompositions
CPS:小型:使用多级分层分解对大型 CPS 网络进行数据驱动的强化学习控制
基本信息
- 批准号:1931932
- 负责人:
- 金额:$ 35.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the current state-of-the-art machine learning based real-time control of large complex networks such as electric power systems is largely bottlenecked by the curse of dimensionality. Even the simplest control designs demand numerical complexity to accomplish. The problem becomes even more challenging when the network model is unknown, due to which an additional learning time needs to be accommodated. This project will take a new stance for solving this problem, and develop a suite of hierarchical or nested machine learning-based schemes that take advantage of various forms of physical redundancies in the network dynamics to learn only the most important traits of its behavior instead of wasting time in learning minor traits that may improve the closed-loop performance only by a small amount. This selective learning approach will reduce learning time by several orders of magnitude, making real-time control more tractable and more implementable. Products will include numerical algorithms that are applicable across a wide range of machine learning based control. In terms of societal impact, the project is strongly envisioned to bring control theorists closer to data scientists so that these two research communities can work together, and answer important questions such as: why the value of big data has traditionally been under-utilized in controls, what new dimensions can control theory gain from machine learning and vice versa, and what primary analytical and experimental tools are needed to make this marriage more successful. The research will also support the cross-disciplinary development of a diverse cohort of PhD and undergraduate students, and the development of a graduate-level course on the applications of machine learning in control.The main technical philosophy behind this work will be to exploit the fact that most large-scale dynamic networks exhibit a lot of redundancy in their dynamics. These redundancies can arise from various factors such as time-scale separation, spatial-scale separation, low-rank controllability, spectral clustering, similarity in temporal snapshots, separation in the control objectives, etc. By deciphering these redundancies from online measurements of states and inputs using machine learning tools, one can devise appropriate decomposition rules to partition the network into non-overlapping groups. Multiple sets of composite controllers can then be learned independently for each group using model-free reinforcement learning. Accordingly, the control goals of the network will also be decomposed into local (microscopic) and global (macroscopic) reward functions. Local controllers will be designed via privacy preserving group learning, and the global controllers via model reduction and filtering. The study will be driven by examples from wide-area control of power systems using streaming Synchrophasor data from Phasor Measurements Units (PMUs). Validation experiments will be carried out in a cyber-physical systems testbed at North Carolina State University.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在当前最先进的基于机器学习的大型复杂网络(如电力系统)的实时控制中,很大程度上受到维数灾难的影响。即使是最简单的控制设计也需要复杂的数值来实现。当网络模型未知时,问题变得更具挑战性,因此需要适应额外的学习时间。该项目将采取一种新的立场来解决这个问题,并开发一套基于分层或嵌套机器学习的方案,利用网络动态中各种形式的物理冗余来学习其行为的最重要特征,而不是浪费时间学习可能只会少量提高闭环性能的次要特征。这种选择性学习方法将减少几个数量级的学习时间,使实时控制更易于处理和实现。产品将包括适用于各种基于机器学习的控制的数值算法。在社会影响方面,该项目的强烈设想是让控制理论家更接近数据科学家,以便这两个研究社区可以共同工作,并回答重要的问题,例如:为什么大数据的价值在控制中传统上没有得到充分利用,控制理论可以从机器学习中获得什么新的维度,反之亦然,以及需要哪些主要的分析和实验工具来使这种婚姻更加成功。该研究还将支持博士生和本科生的跨学科发展,以及开发关于机器学习在控制中应用的研究生课程。这项工作背后的主要技术理念将是利用大多数大规模动态网络在其动态中表现出大量冗余的事实。这些冗余可能会出现从各种因素,如时间尺度分离,空间尺度分离,低秩可控性,谱聚类,时间快照的相似性,分离的控制目标等,通过破译这些冗余的状态和输入的在线测量使用机器学习工具,可以设计适当的分解规则,将网络划分为不重叠的组。然后,可以使用无模型强化学习为每个组独立地学习多组复合控制器。相应地,网络的控制目标也将被分解为局部(微观)和全局(宏观)奖励函数。局部控制器将通过隐私保护组学习设计,全局控制器通过模型简化和过滤。该研究将驱动的例子,从广域控制的电力系统使用流同步相量数据相量测量单元(PMU)。验证实验将在北卡罗来纳州州立大学的网络物理系统测试平台上进行。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wenyuan Tang其他文献
To Overconsume or Underconsume: Baseline Manipulation in Demand Response Programs
过度消费或消费不足:需求响应计划中的基线操纵
- DOI:
10.1109/naps.2018.8600558 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Xiaochu Wang;Wenyuan Tang - 通讯作者:
Wenyuan Tang
Adaptive cold-load pickup considerations in 2-stage microgrid unit commitment for enhancing microgrid resilience
- DOI:
10.1016/j.apenergy.2023.122424 - 发表时间:
2024-02-15 - 期刊:
- 影响因子:
- 作者:
Rongxing Hu;Ashwin Shirsat;Valliappan Muthukaruppan;Yiyan Li;Si Zhang;Wenyuan Tang;Mesut Baran;Ning Lu - 通讯作者:
Ning Lu
Chiari Malformations Type I without Basilar Invagination in Adults: Morphometric and Volumetric Analysis
- DOI:
10.1016/j.wneu.2020.08.048 - 发表时间:
2020-11-01 - 期刊:
- 影响因子:
- 作者:
Shengxi Wang;Zhijian Huang;Rui Xu;Zhengbu Liao;Yi Yan;Wenyuan Tang;Yongzhi Xia - 通讯作者:
Yongzhi Xia
A real-time optimization method for thermo-chemical coupled curing process of composites with LSTM network
基于长短期记忆网络的复合材料热化学耦合固化过程实时优化方法
- DOI:
10.1016/j.jmapro.2025.01.072 - 发表时间:
2025-03-30 - 期刊:
- 影响因子:6.800
- 作者:
Wenyuan Tang;Liang He;Xinyu Hui;Yingjie Xu;Rutong Yang;Yutong Liu;Weihong Zhang - 通讯作者:
Weihong Zhang
Chiari malformations type I without basilar invagination in adults: a morphometric and volumetric analysis.
成人无基底凹陷的 I 型 Chiari 畸形:形态测量和体积分析。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:2
- 作者:
Shengxi Wang;Zhijian Huang;Rui Xu;Z. Liao;Yi Yan;Wenyuan Tang;Yongzhi Xia - 通讯作者:
Yongzhi Xia
Wenyuan Tang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wenyuan Tang', 18)}}的其他基金
CAREER: Pricing Non-convexities Toward Transparency in Electricity Markets
职业:为电力市场的透明度进行非凸性定价
- 批准号:
2144904 - 财政年份:2022
- 资助金额:
$ 35.32万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:
2331590 - 财政年份:2024
- 资助金额:
$ 35.32万 - 项目类别:
Standard Grant
CSR: Small: Latency-controlled Reduction of Data Center Expenses for Handling Bursty ML Inference Requests
CSR:小:通过延迟控制减少数据中心处理突发 ML 推理请求的费用
- 批准号:
2336886 - 财政年份:2024
- 资助金额:
$ 35.32万 - 项目类别:
Standard Grant
CC* INTEGRATION-SMALL: ADIABATIC MICROSERVICE LEVEL LOAD BALANCED FORWARDING ON PISA SWITCH FOR ACCELERATING URGENT PROCESSES IN SCIENCE DATA CENTER NETWORKS
CC* 集成小型:PISA 交换机上的绝热微服务级负载平衡转发,用于加速科学数据中心网络中的紧急进程
- 批准号:
2346729 - 财政年份:2024
- 资助金额:
$ 35.32万 - 项目类别:
Standard Grant
CIF: Small: Efficient and Secure Federated Structure Learning from Bad Data
CIF:小型:高效、安全的联邦结构从不良数据中学习
- 批准号:
2341359 - 财政年份:2024
- 资助金额:
$ 35.32万 - 项目类别:
Standard Grant
Measurement and analysis of radiotherapy small field dosimetry data to support the development of a simulation training product for clinical Radiotherapy Physicists.
放射治疗小场剂量测定数据的测量和分析,以支持临床放射治疗物理学家模拟培训产品的开发。
- 批准号:
10089179 - 财政年份:2024
- 资助金额:
$ 35.32万 - 项目类别:
Collaborative R&D
CC* Integration-Small: Enhancing Data Transfers by Enabling Programmability and Closed-loop Control in a Non-programmable Science DMZ
CC* Integration-Small:通过在不可编程科学 DMZ 中启用可编程性和闭环控制来增强数据传输
- 批准号:
2346726 - 财政年份:2024
- 资助金额:
$ 35.32万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
$ 35.32万 - 项目类别:
Standard Grant
Collaborative Research: CCF Core: Small: User-transparent Data Management for Persistence and Crash-consistency in Non-volatile Memories
协作研究:CCF 核心:小型:用户透明的数据管理,以实现非易失性存储器中的持久性和崩溃一致性
- 批准号:
2313146 - 财政年份:2023
- 资助金额:
$ 35.32万 - 项目类别:
Standard Grant
CSR: Small: Enhancing Timeliness and Power-Efficiency of Real-Time Data Services
CSR:小:提高实时数据服务的及时性和能效
- 批准号:
2326796 - 财政年份:2023
- 资助金额:
$ 35.32万 - 项目类别:
Standard Grant
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
- 批准号:
2308530 - 财政年份:2023
- 资助金额:
$ 35.32万 - 项目类别:
Standard Grant