Development of a refractive plasma lens for focusing attosecond beams

用于聚焦阿秒光束的折射等离子体透镜的开发

基本信息

项目摘要

Refractive lenses, which are widely used for the imaging and focusing of light as well as for microscopy applications, are available in many spectral regions of the electromagnetic spectrum, including the visible, infrared, terahertz, ultraviolet and even X-ray regimes. In the extreme-ultraviolet (XUV) region (covering the wavelength range from 10 to 124 nanometers), which is of high interest for scientific and industrial applications including coherent diffractive imaging of nanoscale structures, attosecond science and nanolithography, refractive lenses have not been available. This can be explained by the large absorption of XUV radiation by solid matter. Recently, we developed a gas-phase lens enabling the focusing of XUV pulses with photon energies in the vicinity of atomic resonances. These gas-phase lenses can be used in the wavelength region between 50 and 124 nanometers, whereas absorption remains a limiting factor for wavelengths below 50 nanometers. The goal of this project is to develop a plasma refractive lens that enables focusing of XUV pulses in the spectral region between 10 and 50 nanometers. The plasma lens exploits the refraction due to free electrons in the plasma, resulting in low chromatic aberration and low dispersion. A plasma refractive lens is therefore ideally suited to focus attosecond pulses, allowing one to maintain an attosecond pulse duration in the focus. Following the development of the XUV plasma lens, we will characterize the XUV focal spot and compare the obtained results with simulations. We will further measure the XUV pulse duration in the focal plane of the plasma lens using the attosecond streaking technique. Compared to mirrors that are typically used to focus XUV beams, important advantages of the XUV plasma lens are the low absorption losses and the possibility to change the focal length in-situ.
折射透镜广泛用于光的成像和聚焦以及显微镜应用,可用于电磁波谱的许多光谱区域,包括可见光,红外线,太赫兹,紫外线甚至x射线制度。在极紫外(XUV)区域(波长范围从10到124纳米),这是科学和工业应用的高度兴趣,包括纳米级结构的相干衍射成像,阿秒科学和纳米光刻,折射透镜还没有可用。这可以用固体物质对XUV辐射的大量吸收来解释。最近,我们开发了一种气相透镜,使光子能量在原子共振附近聚焦XUV脉冲。这些气相透镜可以在50到124纳米的波长范围内使用,而对于50纳米以下的波长,吸收仍然是一个限制因素。该项目的目标是开发一种等离子折射透镜,使XUV脉冲聚焦在光谱区域在10到50纳米之间。等离子体透镜利用等离子体中自由电子的折射,产生低色差和低色散。因此,等离子体折射透镜非常适合聚焦阿秒脉冲,使人们能够在焦点中保持阿秒脉冲持续时间。随着XUV等离子体透镜的发展,我们将对XUV焦斑进行表征,并将所得结果与模拟结果进行比较。我们将使用阿秒条纹技术进一步测量等离子体透镜焦平面上的XUV脉冲持续时间。与一般用于聚焦XUV光束的反射镜相比,XUV等离子体透镜的重要优点是吸收损耗低,并且可以原位改变焦距。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Bernd Schütte其他文献

Dr. Bernd Schütte的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Bernd Schütte', 18)}}的其他基金

Investigation of charging dynamics in atomic clusters on an attosecond timescale
阿秒时间尺度原子团簇充电动力学研究
  • 批准号:
    263667282
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Attosecond-pump attosecond-probe inner-shell spectroscopy
阿秒泵浦阿秒探针内壳光谱
  • 批准号:
    471478110
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Development of a Novel Technology for Preparative Fractionation and Characterization of Lipoprotein Particles
脂蛋白颗粒制备分级分离和表征新技术的开发
  • 批准号:
    10708003
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Development of a Novel Technology for Preparative Fractionation and Characterization of Lipoprotein Particles
脂蛋白颗粒制备分级分离和表征新技术的开发
  • 批准号:
    10503961
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Evaluation of Subtractive Immunopheresis for Treatment of Hormone-Refractive Advanced Breast Cancer
减法免疫去除术治疗激素折射晚期乳腺癌的评价
  • 批准号:
    10483880
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Isolation and Assessment of Blood-Circulating Cancer Exosomes with LSS and SERS Lab on a Chip Optical Spectroscopic Instrument
使用芯片光学光谱仪器上的 LSS 和 SERS 实验室分离和评估血液循环癌症外泌体
  • 批准号:
    10084275
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Isolation and Assessment of Blood-Circulating Cancer Exosomes with LSS and SERS Lab on a Chip Optical Spectroscopic Instrument
使用芯片光学光谱仪器上的 LSS 和 SERS 实验室分离和评估血液循环癌症外泌体
  • 批准号:
    10328506
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Photonic Crystal Based Point-of-Care Detection of HIV Viral Load Using a Smartphone Biosensor
使用智能手机生物传感器进行基于光子晶体的 HIV 病毒载量即时检测
  • 批准号:
    9231263
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Bioaffinity Assays Using UV One-Dimensional Photonic Crystals (1DPC)
使用紫外一维光子晶体 (1DPC) 进行生物亲和力测定
  • 批准号:
    9098709
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
POINT OF CARE ACUTE KIDNEY INJURY DETECTION USING MOLECULARLY IMPRINTED GOLD NANOCAGES
使用分子印迹金纳米笼进行护理点急性肾损伤检测
  • 批准号:
    9144377
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
POINT OF CARE ACUTE KIDNEY INJURY DETECTION USING MOLECULARLY IMPRINTED GOLD NANOCAGES
使用分子印迹金纳米笼进行护理点急性肾损伤检测
  • 批准号:
    8824216
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Bioaffinity Assays Using UV One-Dimensional Photonic Crystals (1DPC)
使用紫外一维光子晶体 (1DPC) 进行生物亲和力测定
  • 批准号:
    8957305
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了