Applied Analysis for Nonlinear Systems
非线性系统的应用分析
基本信息
- 批准号:14340035
- 负责人:
- 金额:$ 7.74万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1)Heat Convection Pronlem : To extend the bifurcation curves obtained by the local bifurcation theory into the analytically unknown region in the solution space, to investigate the change of stability of the solution on the extended bifurcation curves and to know the global bifurcation structure, we use new computer assisted analysis for Boussinesq equation. Especially, we showed by computer assisted proofs the existence of extended bifurcation curves of the roll-type solutions. We also formulate a method to determine the point of secondary bifurcation on the extended bifurcation curves.(2)The cavity flows of Navier-Stokes equation are proved to exist by a revised numerical verification method for the higher Reynolds number. We reformulated the Newton method for the fixed point equation in the infinite dimensional space.(3)The blow-up of the solution of Navier-Stokes equation is proved to be characterized by the two components of vorticity, which means that its three components are not necessary to protect the blow-up.(4)Forced nonlinear wave equations are investigated by the Newton method in the infinite dimensional Banach space. The inverse operator of linearized equation at the approximate (constructed by computers) solution can be approximated in the norm by a pseudo diagonal operator.(5)In the Lorenz model equation we proved the existence of singularly degenerate heteroclinic cycle, which is an invariant set. We suppose that it will give the chaotic attractor by a perturbation.
(1)热对流问题:为了将局部分歧理论得到的分歧曲线推广到解空间中的解析未知区域,研究解在推广的分歧曲线上的稳定性变化,了解全局分歧结构,我们对Boussinesq方程进行了新的计算机辅助分析。特别地,通过计算机辅助证明证明了该滚动型解的扩展分支曲线的存在性。我们还制定了一个方法来确定扩展的分歧曲线上的二次分歧点。(2)采用修正的数值验证方法,证明了高雷诺数下Navier-Stokes方程中空腔流动的存在性。我们将牛顿法推广到无限维空间中的不动点方程。(3)证明了Navier-Stokes方程解的爆破是由涡量的两个分量来刻画的,这意味着它的三个分量并不是保证爆破的必要条件。(4)利用Newton方法研究了无穷维Banach空间中的强迫非线性波动方程。线性化方程的逆算子在近似解(由计算机构造)处可用一个伪对角算子在范数下近似。(5)In证明了Lorenz模型方程的奇异退化异宿环的存在性,它是一个不变集。我们假设它会通过一个扰动产生混沌吸引子。
项目成果
期刊论文数量(60)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Viscous Shock Wave and Boundary Layer Solution to an Inflow Problem for Compressible Viscous Gas
- DOI:10.1007/s00220-003-0874-9
- 发表时间:2003-06
- 期刊:
- 影响因子:2.4
- 作者:F. Huang;A. Matsumura;Xiaoding Shi
- 通讯作者:F. Huang;A. Matsumura;Xiaoding Shi
Extension criterion via two-components of vorticity on strong solutions to the 3 D Navier-Stokes equations
- DOI:10.1007/s00209-003-0576-1
- 发表时间:2004
- 期刊:
- 影响因子:0.8
- 作者:H. Kozono;N. Yatsu
- 通讯作者:H. Kozono;N. Yatsu
Kyuya Masuda et al.: "Discrete Lax pairs for discrete Toda equation"Commentarii Mathematici, Univ.Sancti Pauli. 52. 191-196 (2003)
Kyuya Masuda 等人:“离散 Toda 方程的离散 Lax 对”Commentarii Mathematici,Univ.Sancti Pauli。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Global in time behavior of viscous surface waves: horizontally periodic motion
- DOI:10.1215/kjm/1250283555
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:T. Nishida;Yoshiaki Teramoto;H. Yoshihara
- 通讯作者:T. Nishida;Yoshiaki Teramoto;H. Yoshihara
Takaaki Nishida et al.: "Some Computer Assisted Proofs for Solutions of the Heat Convection Problems"Reliable Computing. 9. 359-372 (2003)
Takaaki Nishida 等人:“热对流问题解决方案的一些计算机辅助证明”可靠计算。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NISHIDA Takaaki其他文献
NISHIDA Takaaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NISHIDA Takaaki', 18)}}的其他基金
Toward a Global Analysis for Nonlinear System of Partial Differential Equations
非线性偏微分方程组的全局分析
- 批准号:
23540253 - 财政年份:2011
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of study of nonlinear system as applied analysis
非线性系统应用分析研究的发展
- 批准号:
20540141 - 财政年份:2008
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of applied analysis toward the global theory for nonlinear systems
非线性系统全局理论的应用分析研究
- 批准号:
17340027 - 财政年份:2005
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Researches on singularities arising in flows and waves
流动和波浪中出现的奇点研究
- 批准号:
11214204 - 财政年份:1999
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas (B)
Comprehensive Research Toward the Global Theory for the System of Nonlinear Partial Differential Equations
非线性偏微分方程组整体理论的综合研究
- 批准号:
10304012 - 财政年份:1998
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (A).
Applied analysis of differential equations in math.sci.
math.sci 中微分方程的应用分析。
- 批准号:
08404007 - 财政年份:1996
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Modern Analysis for the Equations of Mathematical Science
数学科学方程的现代分析
- 批准号:
04402001 - 财政年份:1992
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for General Scientific Research (A)
Synthetical Researches on Applied Analysis and Computational Mathematics
应用分析与计算数学综合研究
- 批准号:
03302009 - 财政年份:1991
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
Modern Mathematical Research for Equations in Mathematical Physics
数学物理方程的现代数学研究
- 批准号:
02452007 - 财政年份:1990
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)














{{item.name}}会员




