Applied Analysis for Nonlinear Systems
非线性系统的应用分析
基本信息
- 批准号:14340035
- 负责人:
- 金额:$ 7.74万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1)Heat Convection Pronlem : To extend the bifurcation curves obtained by the local bifurcation theory into the analytically unknown region in the solution space, to investigate the change of stability of the solution on the extended bifurcation curves and to know the global bifurcation structure, we use new computer assisted analysis for Boussinesq equation. Especially, we showed by computer assisted proofs the existence of extended bifurcation curves of the roll-type solutions. We also formulate a method to determine the point of secondary bifurcation on the extended bifurcation curves.(2)The cavity flows of Navier-Stokes equation are proved to exist by a revised numerical verification method for the higher Reynolds number. We reformulated the Newton method for the fixed point equation in the infinite dimensional space.(3)The blow-up of the solution of Navier-Stokes equation is proved to be characterized by the two components of vorticity, which means that its three components are not necessary to protect the blow-up.(4)Forced nonlinear wave equations are investigated by the Newton method in the infinite dimensional Banach space. The inverse operator of linearized equation at the approximate (constructed by computers) solution can be approximated in the norm by a pseudo diagonal operator.(5)In the Lorenz model equation we proved the existence of singularly degenerate heteroclinic cycle, which is an invariant set. We suppose that it will give the chaotic attractor by a perturbation.
(1)热对流的前置:将通过局部分叉理论获得的分叉曲线扩展到解决方案空间中的分析未知区域,以研究解决方案在扩展分叉曲线上的稳定性的变化,并了解全球分叉结构,我们对BOUSSINESENESSESENESSESESESESESESESESESESESENESSINESSINESSINESSINESENESSESINESSINESSINESSINESSINESSINESSINESSINESSINESSINESSINESSINESSINESSINESSINESSINESSINESSINESSESESESESEQEATION。尤其是,我们通过计算机辅助证明了卷型溶液的扩展分叉曲线的存在。我们还制定了一种方法,以确定扩展分叉曲线上的次级分叉点。(2)通过修订后的雷诺数数量的修订后数值验证方法证明,Navier-Stokes方程的腔流得到证明存在。我们对无限尺寸空间中的固定点方程进行了重新制定。(3)事实证明,Navier-Stokes方程解决方案的爆炸以涡度的两个组成部分的特征,这意味着它的三个组成部分是不需要保护爆炸的三个组成部分。在近似(由计算机构建的)解决方案构造的线性化方程的逆操作员可以通过伪对角线算子近似。(5)在Lorenz模型方程中,我们证明了存在奇异退化的杂音循环的存在,这是一个不变的集合。我们认为它将通过扰动给予混乱的吸引子。
项目成果
期刊论文数量(60)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Viscous Shock Wave and Boundary Layer Solution to an Inflow Problem for Compressible Viscous Gas
- DOI:10.1007/s00220-003-0874-9
- 发表时间:2003-06
- 期刊:
- 影响因子:2.4
- 作者:F. Huang;A. Matsumura;Xiaoding Shi
- 通讯作者:F. Huang;A. Matsumura;Xiaoding Shi
Kyuya Masuda et al.: "Discrete Lax pairs for discrete Toda equation"Commentarii Mathematici, Univ.Sancti Pauli. 52. 191-196 (2003)
Kyuya Masuda 等人:“离散 Toda 方程的离散 Lax 对”Commentarii Mathematici,Univ.Sancti Pauli。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takaaki Nishida et al.: "Some Computer Assisted Proofs for Solutions of the Heat Convection Problems"Reliable Computing. 9. 359-372 (2003)
Takaaki Nishida 等人:“热对流问题解决方案的一些计算机辅助证明”可靠计算。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroshi Kokubu et al.: "Existence of singularly degenerate heteroclinic cycle in the Lorenz system and its dynamical consequences, Part I"J. Dynamics and Differential Equations. (to appear). 2004
Hiroshi Kokubu 等人:“洛伦兹系统中奇异简并异宿循环的存在及其动力学后果,第一部分”J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takaaki Nishida et al.: "A Numerical Verification of Nontrivial Solutions for the Heat Convection Problem"Journal of Mathematical Fluid Mechanics. 5. 1-20 (2003)
Takaaki Nishida 等人:“热对流问题非平凡解的数值验证”数学流体力学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NISHIDA Takaaki其他文献
NISHIDA Takaaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NISHIDA Takaaki', 18)}}的其他基金
Toward a Global Analysis for Nonlinear System of Partial Differential Equations
非线性偏微分方程组的全局分析
- 批准号:
23540253 - 财政年份:2011
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of study of nonlinear system as applied analysis
非线性系统应用分析研究的发展
- 批准号:
20540141 - 财政年份:2008
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of applied analysis toward the global theory for nonlinear systems
非线性系统全局理论的应用分析研究
- 批准号:
17340027 - 财政年份:2005
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Researches on singularities arising in flows and waves
流动和波浪中出现的奇点研究
- 批准号:
11214204 - 财政年份:1999
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas (B)
Comprehensive Research Toward the Global Theory for the System of Nonlinear Partial Differential Equations
非线性偏微分方程组整体理论的综合研究
- 批准号:
10304012 - 财政年份:1998
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (A).
Applied analysis of differential equations in math.sci.
math.sci 中微分方程的应用分析。
- 批准号:
08404007 - 财政年份:1996
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Modern Analysis for the Equations of Mathematical Science
数学科学方程的现代分析
- 批准号:
04402001 - 财政年份:1992
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for General Scientific Research (A)
Synthetical Researches on Applied Analysis and Computational Mathematics
应用分析与计算数学综合研究
- 批准号:
03302009 - 财政年份:1991
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
Modern Mathematical Research for Equations in Mathematical Physics
数学物理方程的现代数学研究
- 批准号:
02452007 - 财政年份:1990
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
Research of applied analysis toward the global theory for nonlinear systems
非线性系统全局理论的应用分析研究
- 批准号:
17340027 - 财政年份:2005
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)