Researches on singularities arising in flows and waves

流动和波浪中出现的奇点研究

基本信息

  • 批准号:
    11214204
  • 负责人:
  • 金额:
    $ 12.8万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2001
  • 项目状态:
    已结题

项目摘要

1. The precise numerical computation are performed for a class of three dimensional flows governed by the Euler Equation and Navier-Stokes equation. They suggest that both solutions develop the singularities such as the various norms tend to infinity in finite time. In fact suggested by these experiments later Constantine showed the development of the singularities for the case of the Euler equation. That for the Navier-Stokes equation is not yet proved.2. Some axially symmetric similarity solutions are investigated for the Navier-Stokes equation and it is found that the solution has an interior layer as the Reynolds number tends to infinity. Especially in appropriate conditions it is proved that the interior layer exists.3. When the external periodic forces act on fluids, various waves such as stationary, periodic, doubly periodic and chaotic waves are investigated and clarified the bifurcation of them.4. Some periodic traveling waves of the thin layer fluids are investigated on the modulations by the interaction of two periodic modes and the normal forms analysis classifies the dynamics of complex modes completely.5. To develop a global theory for the solution space of heat convection problem, a computer assisted proof is applied especially on the roll-type solutions the global bifurcation branch is obtained and proved about the existence.Pattern formations in the three dimensional case such as roll-type, rectangle-type and hexagonal-type solutions are obtained by the numerical computations and examined their stability and bifurcation branches globally in the space.
1.对一类由Euler方程和Navier-Stokes方程控制的三维流动进行了精确的数值计算。他们认为,这两种解决方案发展的奇异性,如各种规范往往在有限时间内无穷大。事实上,建议这些实验后来君士坦丁表明发展的奇异性的情况下,欧拉方程。对于Navier-Stokes方程,这一点尚未得到证明.研究了Navier-Stokes方程的轴对称相似解,发现当雷诺数趋于无穷大时,解中存在内层。特别是在适当的条件下,证明了内层的存在.研究了流体在周期性外力作用下产生的各种波,如稳态波、周期波、双周期波和混沌波,并阐明了它们的分岔现象。研究了薄层流体中的一些周期行波对两个周期模相互作用的调制,规范形分析对复模动力学进行了完整的分类.为了发展热对流问题解空间的整体理论,应用计算机辅助证明方法,特别是对Roll型解,得到了其整体分支分支,并证明了分支的存在性.通过数值计算,得到了Roll型、矩形型和六边形型解在三维空间中的斑图形式,并研究了它们在空间中的整体稳定性和分支.

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Funakoshi: "Lagrangian chaos and mixing of fluids"Japan J. Industrial & Appl. Math.. 18・2. 613-626 (2001)
M.Funakoshi:“拉格朗日混沌和流体混合”Japan J. Industrial & Appl. 18・2 (2001)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hisashi Okamoto: "Some similarity solution of the Navier-Stokes equations and related topics"Taiwanese Journal of Mathematics. 4・1. (2000)
冈本恒:“纳维-斯托克斯方程的一些相似解及其相关主题”台湾数学杂志(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Koji Ohkitoni: "Numerical study of singularity formation in a class of Euler and Navier-Stokes flows"Physics of Fluids. (2000)
Koji Ohkitoni:“一类欧拉和纳维-斯托克斯流中奇点形成的数值研究”流体物理学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Funakoshi: "Lagrangian chaos and mixing of fluids"Japan J. of Industrial and Applied Mathematics. 18. 613-626 (2001)
M.Funakoshi:“拉格朗日混沌和流体混合”日本工业与应用数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Ohkitani: "Numerical study of singularity formation in a class of Euler and Navier-Stokes flows"Physics of Fluids. 12-12. 3181-3194 (2000)
K.Ohkitani:“一类欧拉和纳维-斯托克斯流中奇点形成的数值研究”流体物理学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NISHIDA Takaaki其他文献

NISHIDA Takaaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NISHIDA Takaaki', 18)}}的其他基金

Toward a Global Analysis for Nonlinear System of Partial Differential Equations
非线性偏微分方程组的全局分析
  • 批准号:
    23540253
  • 财政年份:
    2011
  • 资助金额:
    $ 12.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of study of nonlinear system as applied analysis
非线性系统应用分析研究的发展
  • 批准号:
    20540141
  • 财政年份:
    2008
  • 资助金额:
    $ 12.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research of applied analysis toward the global theory for nonlinear systems
非线性系统全局理论的应用分析研究
  • 批准号:
    17340027
  • 财政年份:
    2005
  • 资助金额:
    $ 12.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Applied Analysis for Nonlinear Systems
非线性系统的应用分析
  • 批准号:
    14340035
  • 财政年份:
    2002
  • 资助金额:
    $ 12.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Comprehensive Research Toward the Global Theory for the System of Nonlinear Partial Differential Equations
非线性偏微分方程组整体理论的综合研究
  • 批准号:
    10304012
  • 财政年份:
    1998
  • 资助金额:
    $ 12.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A).
Applied analysis of differential equations in math.sci.
math.sci 中微分方程的应用分析。
  • 批准号:
    08404007
  • 财政年份:
    1996
  • 资助金额:
    $ 12.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Modern Analysis for the Equations of Mathematical Science
数学科学方程的现代分析
  • 批准号:
    04402001
  • 财政年份:
    1992
  • 资助金额:
    $ 12.8万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (A)
Synthetical Researches on Applied Analysis and Computational Mathematics
应用分析与计算数学综合研究
  • 批准号:
    03302009
  • 财政年份:
    1991
  • 资助金额:
    $ 12.8万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
Modern Mathematical Research for Equations in Mathematical Physics
数学物理方程的现代数学研究
  • 批准号:
    02452007
  • 财政年份:
    1990
  • 资助金额:
    $ 12.8万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

Computer-assisted solution verification for the Navier-Stokes equation with large Reynolds numbers
大雷诺数纳维-斯托克斯方程的计算机辅助解验证
  • 批准号:
    20KK0306
  • 财政年份:
    2021
  • 资助金额:
    $ 12.8万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Acceleration of a Navier-Stokes Equation Solver Using GPU Parallelization and Multigrid
使用 GPU 并行化和多重网格加速纳维-斯托克斯方程求解器
  • 批准号:
    539961-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 12.8万
  • 项目类别:
    University Undergraduate Student Research Awards
Computer-assisted proof for stationary solution existence of Navier-Stokes equation on 3D domain
3D域上Navier-Stokes方程平稳解存在性的计算机辅助证明
  • 批准号:
    18K03411
  • 财政年份:
    2018
  • 资助金额:
    $ 12.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Software development of advanced methods for the incompressible Navier-Stokes equation
不可压缩纳维-斯托克斯方程先进方法的软件开发
  • 批准号:
    398161-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 12.8万
  • 项目类别:
    University Undergraduate Student Research Awards
A study of how indicators for 2-D turbulence depend on the driving force in the Navier-Stokes equation
研究二维湍流指标如何取决于纳维-斯托克斯方程中的驱动力
  • 批准号:
    0511533
  • 财政年份:
    2005
  • 资助金额:
    $ 12.8万
  • 项目类别:
    Standard Grant
Research on the Navier-Stokes equation and the related topics on the nonlinear differential equations
纳维-斯托克斯方程及非线性微分方程相关课题的研究
  • 批准号:
    15540215
  • 财政年份:
    2003
  • 资助金额:
    $ 12.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Solitary-wave solutions of the Navier-Stokes equation
纳维-斯托克斯方程的孤立波解
  • 批准号:
    02805010
  • 财政年份:
    1990
  • 资助金额:
    $ 12.8万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Mathematical Sciences: Free Boundary Problems, Fully Nonlinear Equations, Nonlinear Parabolic Equations, and the Navier-Stokes Equation
数学科学:自由边界问题、完全非线性方程、非线性抛物型方程和纳维-斯托克斯方程
  • 批准号:
    8804567
  • 财政年份:
    1988
  • 资助金额:
    $ 12.8万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Numerical Solution of Stiff Ordinary Differential Equations and the Navier-Stokes Equation
数学科学:刚性常微分方程和纳维-斯托克斯方程的数值解
  • 批准号:
    8719952
  • 财政年份:
    1988
  • 资助金额:
    $ 12.8万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了