Classification problems in Higher Dimensional Birational Geometry
高维双有理几何中的分类问题
基本信息
- 批准号:12440005
- 负责人:
- 金额:$ 4.16万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mori and Fujino have generalized Kodaira's canonical bundle formula and proved, as an application, that algebraic varieties with Kodaira dimension at most three have finitely generated canonical rings. Mori, Miyaoka and Takagi, together with Kollar, have proved the boundedness of Fano 3-folds with only canonical singularities. Mori also gave an explicit description of every irreducible semistable extremal neighborhood with two non-Gorenstein points, in terms of coordinates with equations and patching.Mukai proved that every canonical curve of genus 9 with maximal Clifford index, is a linear space section of the symplectic Grassmannian variety of dimension six.Masahiko Saito have introduced the Okamoto-Painleve pair of an algebraic surface and its anti-canonical divisor which algebro-geometrically characterizes the initial value space of the Painleve equation. He also reconstructed the Painleve equation from the pair using its deformation theory.Nakayama described certain elliptic fiber structures over a given analytic space upto bimeromorphic equivalence using the a-etale cohomology group.Namikawa have studied birational maps between complex symplectic varieties and proved that the analogue of "Reid's dream" does not hold in the category of complex symplectic varieties. He also constructed a counterexample to birational Torelli problem for complex symplectic varieties.Oguiso has generalized the characterization of the Klein curve to the case of K3 surfaces, which states that the Klein-Mukai surface is the only K3 surface which admits a faithful action of the quartic extension of the simple group of order 168.Takagi has generalized Takeuchi's method, obtained a classification list of Q-Fano 3-folds with index two and confirmed the existence in several cases.Fujino has proved that every sequence of log flips terminates for 4 dimensional canonical pairs.
莫里(Mori)和富吉诺(Fujino)已将Kodaira的规范束公式概括,并证明,作为一种应用,具有Kodaira尺寸的代数品种,最多三个具有有限生成的规范环。莫里(Mori),米亚卡(Miyaoka)和高吉(Takagi)与科拉尔(Kollar)一起证明了只有规范性奇异的3倍Fano的界限。莫里(Mori)还在与方程式和补丁的坐标方面对每个不可还原的半超值邻里进行了明确的描述。Mukai证明,9属9属的每个规范曲线都具有最大Clifford index的最大clifford index,是Symplectic Grassmann verters of Simeens of sifeens of sifemahikiko sait的线性空间。代数表面及其反典型的分裂,代数形成量表表征了painleve方程的初始值空间。他还使用其变形理论从两对重建了painleve方程。 He also constructed a counterexample to birational Torelli problem for complex symplectic varieties.Oguiso has generalized the characterization of the Klein curve to the case of K3 surfaces, which states that the Klein-Mukai surface is the only K3 surface which admits a faithful action of the quartic extension of the simple group of order 168.Takagi has generalized Takeuchi's method, obtained a classification list of Q-Fano在几种情况下,有三倍的索引二,并确认存在。
项目成果
期刊论文数量(260)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
OGUISO,Keiji: "On Vorontsov's Theorem on K3 surfaces with non-symplectic group actions (with D.Q.Zhang)"Proc.AMS. 128. 1571-1580 (2000)
OGUISO,Keiji:“关于具有非辛群作用的 K3 曲面上的沃龙佐夫定理(与 D.Q.Zhang 合作)”Proc.AMS。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
HAYAKAWA,Takayuki: "Blowing ups of 3-dimensional terminal singularities,II"Publ.RIMS,Kyoto Univ.. 36. 423-456 (2000)
HAYAKAWA,Takayuki:“3维终端奇点的爆炸,II”Publ.RIMS,京都大学.. 36. 423-456 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
FUJINO,Osamu: "Abundance theorem for semi log canonical threefolds"Duke Math.J.. 102. 513-532 (2000)
藤野修:“半对数正则三重的丰度定理”Duke Math.J.. 102. 513-532 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
小古曽啓示: "Seshadri constants in a family of surfaces"Math.Annalen. 323. 625-631 (2002)
Rev. Okoso:“曲面族中的 Seshadri 常数”Math.Annalen 323. 625-631 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
斎藤盛彦, A.Dimca: "Monodromy at infinity and the weights of cohomology"Compos.Math.. 138. 55-71 (2003)
Morihiko Saito,A.Dimca:“无穷大单性和上同调的权重”Compos.Math.. 138. 55-71 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MORI Shigefumi其他文献
MORI Shigefumi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MORI Shigefumi', 18)}}的其他基金
Various problems related to the classification in higher dimensional birational geometry
与高维双有理几何分类相关的各种问题
- 批准号:
20340005 - 财政年份:2008
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Various Problems on the Classification in Higher Dimensional Birational Geometry
高维双有理几何分类中的各种问题
- 批准号:
16340004 - 财政年份:2004
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Various problems related to classifications around the higher dimensional birational geometry
与高维双有理几何分类相关的各种问题
- 批准号:
09440010 - 财政年份:1997
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Higher Dimensional Algebraic Varieties
高维代数簇
- 批准号:
04044081 - 财政年份:1992
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for international Scientific Research
相似国自然基金
神经活动对AMPA受体mRNA剪接和突触可塑性的影响
- 批准号:31571060
- 批准年份:2015
- 资助金额:25.0 万元
- 项目类别:面上项目
具有循环商奇点的奇异辛flop下的Ruan猜想
- 批准号:11426187
- 批准年份:2014
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
面向时序设计的布图规划算法研究
- 批准号:60606007
- 批准年份:2006
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Optogenetic stimulation of TMEM16F to control phospholipid flip-flop
TMEM16F 的光遗传学刺激控制磷脂触发器
- 批准号:
10601109 - 财政年份:2022
- 资助金额:
$ 4.16万 - 项目类别:
メタノール資化酵母のFlip-flop型接合型変換と性サイクル制御の統合的理解
甲醇同化酵母中触发器交配类型转换和性周期控制的综合理解
- 批准号:
22K06088 - 财政年份:2022
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optogenetic stimulation of TMEM16F to control phospholipid flip-flop
TMEM16F 的光遗传学刺激控制磷脂触发器
- 批准号:
10433070 - 财政年份:2022
- 资助金额:
$ 4.16万 - 项目类别:
Mechanistic understanding of the "flip-flop switch" hypothesis generated by phospholipid translocases
对磷脂易位酶产生的“触发器开关”假说的机制理解
- 批准号:
21K19259 - 财政年份:2021
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: Antiferromagnetic Spin-Flop Transitions in Heusler-Piezoelectric Systems Induced via Voltage
合作研究:电压引起的赫斯勒压电系统中的反铁磁自旋翻转转变
- 批准号:
1905662 - 财政年份:2019
- 资助金额:
$ 4.16万 - 项目类别:
Standard Grant