Classification problems in Higher Dimensional Birational Geometry

高维双有理几何中的分类问题

基本信息

  • 批准号:
    12440005
  • 负责人:
  • 金额:
    $ 4.16万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2003
  • 项目状态:
    已结题

项目摘要

Mori and Fujino have generalized Kodaira's canonical bundle formula and proved, as an application, that algebraic varieties with Kodaira dimension at most three have finitely generated canonical rings. Mori, Miyaoka and Takagi, together with Kollar, have proved the boundedness of Fano 3-folds with only canonical singularities. Mori also gave an explicit description of every irreducible semistable extremal neighborhood with two non-Gorenstein points, in terms of coordinates with equations and patching.Mukai proved that every canonical curve of genus 9 with maximal Clifford index, is a linear space section of the symplectic Grassmannian variety of dimension six.Masahiko Saito have introduced the Okamoto-Painleve pair of an algebraic surface and its anti-canonical divisor which algebro-geometrically characterizes the initial value space of the Painleve equation. He also reconstructed the Painleve equation from the pair using its deformation theory.Nakayama described certain elliptic fiber structures over a given analytic space upto bimeromorphic equivalence using the a-etale cohomology group.Namikawa have studied birational maps between complex symplectic varieties and proved that the analogue of "Reid's dream" does not hold in the category of complex symplectic varieties. He also constructed a counterexample to birational Torelli problem for complex symplectic varieties.Oguiso has generalized the characterization of the Klein curve to the case of K3 surfaces, which states that the Klein-Mukai surface is the only K3 surface which admits a faithful action of the quartic extension of the simple group of order 168.Takagi has generalized Takeuchi's method, obtained a classification list of Q-Fano 3-folds with index two and confirmed the existence in several cases.Fujino has proved that every sequence of log flips terminates for 4 dimensional canonical pairs.
Mori和Fujino推广了Kodaira的正则束公式,并作为一个应用证明了Kodaira维数最多为3的代数变元能够有限生成正则环。Mori, Miyaoka和Takagi与Kollar一起证明了只有正则奇点的Fano 3-fold的有界性。Mori还给出了具有两个非gorenstein点的每一个不可约半稳定极值邻域的方程坐标和补点的明确描述。Mukai证明了每条具有极大Clifford指数的9属正则曲线都是六维辛格拉斯曼变的线性空间剖面。Masahiko Saito引入了代数曲面的Okamoto-Painleve对及其反正则除数,该除数在代数几何上表征了Painleve方程的初值空间。他还利用变形理论重构了Painleve方程。Nakayama利用a- ettale上同调群描述了给定解析空间上的某些椭圆型纤维结构直至双纯等价。Namikawa研究了复辛变之间的双域映射,证明了在复辛变的范畴中,“Reid的梦”的类比不成立。他还构造了复辛变异体双民族Torelli问题的一个反例。Oguiso将Klein曲线的性质推广到K3曲面,指出Klein- mukai曲面是唯一允许有168阶单群四次扩张的忠实作用的K3曲面。Takagi推广了Takeuchi的方法,得到了一个指标为2的Q-Fano 3-fold分类表,并在若干情况下证实了其存在性。Fujino证明了对于四维正则对,每一个对数翻转序列都终止。

项目成果

期刊论文数量(260)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
小古曽啓示: "Seshadri constants in a family of surfaces"Math.Annalen. 323. 625-631 (2002)
Rev. Okoso:“曲面族中的 Seshadri 常数”Math.Annalen 323. 625-631 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
斎藤盛彦, A.Dimca: "Monodromy at infinity and the weights of cohomology"Compos.Math.. 138. 55-71 (2003)
Morihiko Saito,A.Dimca:“无穷大单性和上同调的权重”Compos.Math.. 138. 55-71 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
藤野修: "Notes on toric varieties from Mori theoretic viewpoint"Tohoku Math.J.. 55. 551-564 (2003)
藤野修:“从森理论观点看环曲面簇的注释”Tohoku Math.J.. 55. 551-564 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Inaba, Michiaki, 岩崎克則, 斎藤政彦: "Backlund transformations of the Sixth Painleve Equations in Terms of Riemann-Hilbert correspondences"Internat.Math.Res.. 1(Notices). 1-30 (2004)
Inaba、Michiaki、Katsunori Iwasaki、Masahiko Saito:“黎曼-希尔伯特对应关系中第六 Painleve 方程的 Backlund 变换”Internat.Math.Res.. 1-30 (2004)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
藤野修: "A canonical bundle formula for certain algebraic fiber spaces and its applications"Nagoya Math. J.. (掲載予定).
Osamu Fujino:“某些代数纤维空间的规范丛公式及其应用”N​​agoya Math J..(待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MORI Shigefumi其他文献

MORI Shigefumi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MORI Shigefumi', 18)}}的其他基金

Various problems related to the classification in higher dimensional birational geometry
与高维双有理几何分类相关的各种问题
  • 批准号:
    20340005
  • 财政年份:
    2008
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Various Problems on the Classification in Higher Dimensional Birational Geometry
高维双有理几何分类中的各种问题
  • 批准号:
    16340004
  • 财政年份:
    2004
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Various problems related to classifications around the higher dimensional birational geometry
与高维双有理几何分类相关的各种问题
  • 批准号:
    09440010
  • 财政年份:
    1997
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Higher Dimensional Algebraic Varieties
高维代数簇
  • 批准号:
    04044081
  • 财政年份:
    1992
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for international Scientific Research

相似国自然基金

神经活动对AMPA受体mRNA剪接和突触可塑性的影响
  • 批准号:
    31571060
  • 批准年份:
    2015
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
具有循环商奇点的奇异辛flop下的Ruan猜想
  • 批准号:
    11426187
  • 批准年份:
    2014
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
面向时序设计的布图规划算法研究
  • 批准号:
    60606007
  • 批准年份:
    2006
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Optogenetic stimulation of TMEM16F to control phospholipid flip-flop
TMEM16F 的光遗传学刺激控制磷脂触发器
  • 批准号:
    10601109
  • 财政年份:
    2022
  • 资助金额:
    $ 4.16万
  • 项目类别:
メタノール資化酵母のFlip-flop型接合型変換と性サイクル制御の統合的理解
甲醇同化酵母中触发器交配类型转换和性周期控制的综合理解
  • 批准号:
    22K06088
  • 财政年份:
    2022
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optogenetic stimulation of TMEM16F to control phospholipid flip-flop
TMEM16F 的光遗传学刺激控制磷脂触发器
  • 批准号:
    10433070
  • 财政年份:
    2022
  • 资助金额:
    $ 4.16万
  • 项目类别:
Mechanistic understanding of the "flip-flop switch" hypothesis generated by phospholipid translocases
对磷脂易位酶产生的“触发器开关”假说的机制理解
  • 批准号:
    21K19259
  • 财政年份:
    2021
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: Antiferromagnetic Spin-Flop Transitions in Heusler-Piezoelectric Systems Induced via Voltage
合作研究:电压引起的赫斯勒压电系统中的反铁磁自旋翻转转变
  • 批准号:
    1905662
  • 财政年份:
    2019
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Standard Grant
Collaborative Research: Antiferromagnetic Spin-Flop Transitions in Heusler-Piezoelectric Systems Induced via Voltage
合作研究:电压引起的赫斯勒压电系统中的反铁磁自旋翻转转变
  • 批准号:
    1904446
  • 财政年份:
    2019
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Interagency Agreement
Development of transmembrane peptide promoting lipid flip-flop in the plasma membrane
促进质膜脂质翻转的跨膜肽的开发
  • 批准号:
    19K16086
  • 财政年份:
    2019
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A flip-flop mechanism for temperature regulation during inflammation
炎症期间温度调节的触发器机制
  • 批准号:
    18K19262
  • 财政年份:
    2018
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Process Variation Estimation using Flip-Flop Retention Characteristics
使用触发器保留特性估计过程变化
  • 批准号:
    17K12657
  • 财政年份:
    2017
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of flow control device using flip-flop nozzle and its application to stagnation point control of counter jet
翻转喷嘴流量控制装置的研制及其在逆射流驻点控制中的应用
  • 批准号:
    15K05789
  • 财政年份:
    2015
  • 资助金额:
    $ 4.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了