Development of computer programs for two dimensional Raman and Infrared vibrational spectroscopy

二维拉曼和红外振动光谱计算机程序的开发

基本信息

项目摘要

Multidimensional vibrational response functions of a harmonic oscillator are reconsidered by assuming nonlinear system-bath couplings. In addition to a standard linear-linear (LL) system-bath interaction, we consider a square-linear (SL) interaction. The LL interaction causes the vibrational energy relaxation, while the SL interaction is mainly responsible for the vibrational phase relaxation. The dynamics of the relevant system are investigated by the numerical integration of the Gaussian-Markovian (GM) Fokker-Planck equation under the condition of strong couplings with a colored noise bath, where the conventional perturbative approach cannot be applied. The response functions for the 5h-order nonresonant Raman and the 3rd-order infrared or equivalently the 2nd-order infrared and the 7th-order nonresonant Raman spectra are calculated under the various combinations of the LL and the SL coupling strengths. We then study a dissipative bistable system presents the simplest model to describe condensed phase reaction dynamics. Using a quantum master equation approach to calculate multitime dipole correlation functions we demonstrate how the dissipative dynamics can be characterized by time-resolved 3rd-order infrared spectroscopy. Thereby we incorporate LL and SL system-bath interaction into the Redfield relaxation tensor. We also investigate a 2D spectra of a rigid rotator coupled to a GM harmonic oscillator bath. The analytical expression of a four-time correlation function of a dipole that is the observable of 2D microwave or far-infrared spectroscopy is obtained from a generating functional approach. The spectra in the absence of damping are discrete and reveal transitions between eigenstates of the angular momentum quantized due to the cyclic boundary condition.
通过假定系统-浴场的非线性耦合,重新考虑了谐振子的多维振动响应函数。除了标准的线性-线性(LL)体系-浴液相互作用外,我们还考虑了平方线性(SL)相互作用。L1相互作用引起振动能弛豫,而SL相互作用主要引起振动相弛豫。通过数值积分高斯-马尔可夫(GM)福克-普朗克(GM)福克-普朗克(Fokker-Planck)方程,研究了强耦合有色噪声浴场条件下相关系统的动力学,其中传统的微扰方法是不能应用的。在不同的激光和激光耦合强度组合下,计算了5h阶非共振喇曼光谱和三阶红外光谱或等效的二阶红外光谱和七阶非共振喇曼光谱的响应函数。然后研究了耗散双稳系统,给出了描述凝聚相反应动力学的最简单模型。用量子主方程方法计算多时间偶极关联函数,我们演示了耗散动力学如何用时间分辨三阶红外光谱来表征。因此,我们在红场弛豫张量中加入了LL和SL的体系-浴态相互作用。我们还研究了与GM谐振子池耦合的刚性转子的二维谱。用生成泛函方法得到了二维微波或远红外光谱能观偶极子的四倍关联函数的解析表达式。无阻尼谱是离散的,揭示了由于循环边界条件而量子化的角动量本征态之间的跃迁。

项目成果

期刊论文数量(61)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Suzuki, Y.Tanimura: "Probing a colored-noise induced peak of a strongly damped Brownian system by one-and two-dimensional spectroscopy"Chem. phys. Lett. 115. 51-56 (2002)
Y.Suzuki,Y.Tanimura:“通过一维和二维光谱探测强阻尼布朗系统的有色噪声诱导峰”Chem。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Suzuk, Y.Tanimura: "Two-time correlation function of a two-dimensional quantal rotator in a colored noise"J. Phys. Soc. Jpn. 71. 2414-2426 (2002)
Y.Suzuk,Y.Tanimura:“有色噪声中二维量子旋转器的两次相关函数”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
谷村吉隆: "化学物理入門 : 経路積分法と非平衡統計力学"サイエンス社. 195 (2002)
谷村芳隆:《化学物理导论:路径积分法和非平衡统计力学》 Science Inc. 195 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Suzuki, Y.Tanimura: "Quantum theory of two-dimensional rotator in a dissipative environment : Application to infrared spectroscopy"J. Phys. Soc. Jpn. 70. 1167-1170 (2001)
Y.Suzuki,Y.Tanimura:“耗散环境中二维旋转器的量子理论:在红外光谱中的应用”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Tanimura, T.Steffen: "2D spectroscopy for harmonic vibrational modes with nonlinear system bath interactions : Gaussian-Markovian case"J.Phys.Soc.Jpn.. 69. 4095-4106 (2000)
Y.Tanimura、T.Steffen:“具有非线性系统浴相互作用的谐波振动模式的二维光谱:高斯-马尔可夫案例”J.Phys.Soc.Jpn.. 69. 4095-4106 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TANIMURA Yoshitaka其他文献

TANIMURA Yoshitaka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TANIMURA Yoshitaka', 18)}}的其他基金

Reduced Hierachal Equations of Motion for Exciton and electron transfer ssystems: Application to nonlinear response
激子和电子转移系统的简化层次运动方程:在非线性响应中的应用
  • 批准号:
    26248005
  • 财政年份:
    2014
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Theoretical study of detection and control of quantum coherence using a multi-dimensional spectrum
利用多维光谱检测和控制量子相干性的理论研究
  • 批准号:
    22350006
  • 财政年份:
    2010
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Theoretical studies of multidimensional NMR, X-ray, and Infrared spectroscopies
多维核磁共振、X射线和红外光谱的理论研究
  • 批准号:
    19350011
  • 财政年份:
    2007
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Exploring a free energy landscape of frustrated system by means of multi-dimensional spectroscopes
利用多维光谱仪探索受挫系统的自由能景观
  • 批准号:
    15205005
  • 财政年份:
    2003
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Electron transfer and protein transfer reactions in salvation and protein environments
救赎和蛋白质环境中的电子转移和蛋白质转移反应
  • 批准号:
    10206210
  • 财政年份:
    1998
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)
Higher order off-resonat optical processes for homogeneous and inhomogeneous broadening of liquids
用于液体均匀和非均匀展宽的高阶非共振光学过程
  • 批准号:
    08640657
  • 财政年份:
    1996
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Analysis of asymptotic behaviors of branching Brownian motion within frontier
边界内分支布朗运动的渐近行为分析
  • 批准号:
    22K03427
  • 财政年份:
    2022
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Change in the nature and enhancement of Brownian motion in shear flows caused by the non-modal growth of thermal fluctuations
热波动非模态增长引起的剪切流布朗运动性质的变化和增强
  • 批准号:
    506557030
  • 财政年份:
    2022
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Research Grants
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
  • 批准号:
    RGPIN-2017-05706
  • 财政年份:
    2022
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Discovery Grants Program - Individual
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
  • 批准号:
    RGPIN-2017-05706
  • 财政年份:
    2021
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Discovery Grants Program - Individual
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
  • 批准号:
    RGPIN-2017-05706
  • 财政年份:
    2020
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Discovery Grants Program - Individual
Super-Brownian Motion with single point source: Regularization, approximation and path properties
单点源超布朗运动:正则化、近似和路径属性
  • 批准号:
    429778995
  • 财政年份:
    2019
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Research Grants
Nano particle sizing method based on Brownian motion analysis for the system of atto gram particles
基于布朗运动分析的阿托克颗粒体系纳米粒径分析方法
  • 批准号:
    19H02043
  • 财政年份:
    2019
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
  • 批准号:
    RGPIN-2017-05706
  • 财政年份:
    2019
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Discovery Grants Program - Individual
Brownian motion dynamics in a mixed medium by translational / rotational displacement statistical analysis of particles
通过颗粒的平移/旋转位移统计分析混合介质中的布朗运动动力学
  • 批准号:
    19K15510
  • 财政年份:
    2019
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EAGER: Bio-Mimetic Molecular Machines Driven by Brownian Motion of Synthetic Peptoid Polymers
EAGER:由合成类肽聚合物的布朗运动驱动的仿生分子机器
  • 批准号:
    1733575
  • 财政年份:
    2018
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了