Effectiveness of Kullback-Leibler Information As A Measure of Dependence
Kullback-Leibler 信息作为依赖性衡量标准的有效性
基本信息
- 批准号:12480063
- 负责人:
- 金额:$ 6.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this project is to investigate effectiveness of Kullback-Leibler information. In this project, various aspects of this information measure have been investigated.We could show the effectiveness of Kullback-Leibler information as a criterion of model selection. It is clarified that Bootstrap type estimate of Kullback-Leibler information is quite powerful, particularly in case of discrete distributions like Binomial or Multinomial.To ensure practical usefulness of model selection technique based on Kullback-Leibler information, we performed various type of real data analysis, In due course of analysis of interest rate time series, we found that neural network should be included in a family of statistical models to be selected. We then extended ordinary neural network to stochastic neural network and developed an efficient training algorithm. We also gave a mathematical proof of the convergence. The stochastic neural network is quite powerful, for example, it gives us the best one day ahead prediction of fall or rise of TOPIX with around 60% accuracy.We also analyzed satellite radar received signals and instantaneous foreign exchange prices to investigate effectiveness of Kullback-Leibler information as a criterion for the processing. As a result, we found ten times precise data processing algorithm for the former and constructed a clustered Poisson marked process for the latter.To investigate information flows on graphical model, we concentrated our attention into conditional independence which is a key idea in graphical modeling. As a result, we found that conditional independence is too strong condition to be realized unless in case of normal distribution or its monotone transformed distribution. However, we found that Kullback-Leibler information is a promising alternative measure in place of conditional independence.
该项目的目的是研究Kullback-Leibler信息的有效性。在这个项目中,我们已经研究了这个信息测度的各个方面,我们可以证明Kullback-Leibler信息作为模型选择标准的有效性。为了保证基于Kullback-Leibler信息的模型选择技术的实用性,我们进行了各种类型的真实的数据分析,在利率时间序列分析的适当过程中,我们发现,神经网络应该包括在一个家庭的统计模型进行选择。然后将普通神经网络推广到随机神经网络,并提出了一种有效的训练算法。并给出了收敛性的数学证明。随机神经网络的功能非常强大,例如,它可以提前一天预测TOPIX的下跌或上涨,准确率约为60%。我们还分析了卫星雷达接收信号和瞬时外汇价格,以研究Kullback-Leibler信息作为处理标准的有效性。在此基础上,我们为前者找到了10倍精度的数据处理算法,为后者构造了一个聚类Poisson标记过程。为了研究图模型上的信息流,我们将注意力集中在图建模中的一个关键思想--条件独立性上。结果发现,条件独立性是一个很强的条件,除非是正态分布或其单调变换分布,否则很难实现。然而,我们发现,Kullback-Leibler信息是一个有前途的替代措施的地方条件独立。
项目成果
期刊论文数量(46)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Noda,K,Wu,Q.G.and Shimigu,K.: "Admissihility and Inadmissihility of a ..."Statistical panniy and Inference. 93. 197-210 (2001)
Noda,K,Wu,Q.G. 和 Shimigu,K.:“……的允许和禁止”统计潘尼和推论。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shigeo Kamitsuji and Ritei Shibata: "Learning Algorithm foer Stochastic Neural Network"To appear in Neural Network. (2003)
Shigeo Kamitsuji 和 Ritei Shibata:“Learning Algorithm foer Stochastic Neural Network”出现在 Neural Network 中。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y. Aoki, T. Kato and R. Shibata: "Ground Surface Recenstruction from Mixed SAR Signal"To appear in IEEE Transections on Aerospace and Electronic Systems.
Y. Aoki、T. Kato 和 R. Shibata:“混合 SAR 信号的地表重建”出现在 IEEE Transections on Aerospace and Electronic Systems 中。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
柴田里程,上辻茂男: "時系列モデルと学習-金融時系列と例として-"情報処理. 42. 27-31 (2001)
Riho Shibata,Shigeo Utsutsuji:“时间序列模型和学习 - 金融时间序列和示例 -”信息处理。 42. 27-31 (2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ritei Shibata: "Information Criteria for Statistical Model Selection"Electronics and Communications in Japan. Part3, Vol.85. 605-611 (2000)
Ritei Shibata:“统计模型选择的信息标准”日本电子和通信。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHIBATA Ritei其他文献
SHIBATA Ritei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHIBATA Ritei', 18)}}的其他基金
Theory and Practice of Data Visualization for Modeling Complex Large Scale Data
复杂大规模数据建模的数据可视化理论与实践
- 批准号:
19300097 - 财政年份:2007
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Powerful Strategy for Point Process Data Analysis and the Archive of Models
用于点过程数据分析和模型存档的强大策略
- 批准号:
15300095 - 财政年份:2003
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Implimentation of InterDatabase through DandD Agent for Advanced Data Analysis
通过 DandD Agent 实现 InterDatabase 进行高级数据分析
- 批准号:
13558024 - 财政年份:2001
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
DEVELOPMENT OF D&D SUPPORT SOFTWARE
D&D支持软件的开发
- 批准号:
10558037 - 财政年份:1998
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Statistical Model Selection and its applications
统计模型选择及其应用
- 批准号:
09680315 - 财政年份:1997
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Enuironment for Data Analysis by S
S数据分析环境的开发
- 批准号:
06680289 - 财政年份:1994
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 6.66万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 6.66万 - 项目类别:
Standard Grant
Integrating Federated Split Neural Network with Artificial Stereoscopic Compound Eyes for Optical Flow Sensing in 3D Space with Precision
将联合分裂神经网络与人工立体复眼相结合,实现 3D 空间中的精确光流传感
- 批准号:
2332060 - 财政年份:2024
- 资助金额:
$ 6.66万 - 项目类别:
Standard Grant
Heterogeneous Graph Neural Network based Federated Mobile Crowdsensing
基于异构图神经网络的联合移动群智感知
- 批准号:
23K24829 - 财政年份:2024
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 6.66万 - 项目类别:
Continuing Grant
A Neural Network Management and Distribution System for Providing Super Multi-class Recognition Capability in Real Space
一种提供真实空间超多类别识别能力的神经网络管理与分发系统
- 批准号:
23K11120 - 财政年份:2023
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
- 批准号:
23K11177 - 财政年份:2023
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research on neural network reconstruction and functional recovery after stroke
脑卒中后神经网络重建及功能恢复的基础研究
- 批准号:
23K10454 - 财政年份:2023
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deepening Graph Neural Network Technology
深化图神经网络技术
- 批准号:
23H03451 - 财政年份:2023
- 资助金额:
$ 6.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
- 批准号:
2308530 - 财政年份:2023
- 资助金额:
$ 6.66万 - 项目类别:
Standard Grant














{{item.name}}会员




