Statistical Model Selection and its applications

统计模型选择及其应用

基本信息

  • 批准号:
    09680315
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

This project has been conducted with two aims. One is to establish a global framework for statistical model selection. Another is to extend current model selection techniques to the form which can be applicable for computer oriented inference models, like neural network models or wavelet models.The first aim has been performed through writing a book "Statistical Model Selection" which will be published by Springer-Verlag. As a result, it turns out clear that various model selection criteria like BIC, ABIC or MDL can be systematically treated in a frame work of Bayesian. This result will not only lead further development of statistical model selection but also makes warning for easy application of one of currently existing criteria to the selection of a computer oriented model.We also conducted the project by concentrating our attention into the selection of statistical models for discrete observations. it is shown that model selection criterion like AIC is not good for selecting one of such models. One of reasons why it does not work well is that the speed of convergence of the distribution of estimates to the asymptotic distribution is slow and not uniform in terms of value of parameters. Therefore we explored various ways of correction and finally found that a bootstrap type correction works best. We developed an algorithm for applying this correction, too.We also applied a statistical model selection technique to a real data ; 7 variate interest rate series. We developed an efficient algorithm which makes possible to compare any combination of variables and lags. As far as we know, there was no such software. As a result of the application, we could establish a common model for various time period.
这个项目有两个目的。一是建立统计模型选择的全局框架。另一种是将现有的模型选择技术扩展到可以适用于面向计算机的推理模型的形式,如神经网络模型或小波模型。第一个目标是通过写一本名为《统计模型选择》的书来实现的,这本书将由斯普林格出版社出版。结果表明,可以在贝叶斯框架中系统地处理BIC、ABIC或MDL等各种模型选择标准。这一结果不仅对统计模型选择的进一步发展具有指导意义,而且对现有的一种标准在面向计算机的模型选择中的应用提出了警告。我们还通过将注意力集中在离散观测的统计模型的选择上来进行项目。结果表明,像AIC这样的模型选择准则并不能很好地选择其中一个模型。它不能很好地工作的原因之一是渐近分布的估计分布的收敛速度很慢,并且在参数值方面不均匀。因此,我们探索了各种校正方法,最终发现自举式校正效果最好。我们还开发了一种应用这种校正的算法。我们还将统计模型选择技术应用于实际数据;7变量利率序列。我们开发了一种有效的算法,可以比较任何变量和滞后的组合。据我们所知,没有这样的软件。作为应用程序的结果,我们可以为不同的时间段建立一个公共模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ritei Shibata: "Statistical Model Selection" Spring-Verlag, 300 (1999)
Ritei Shibata:“统计模型选择”Spring-Verlag,300(1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Ritei Shibata: "Discrete Models Selection" Proc.of Contemporary Multivariate Analysis. D.20-D.29 (1997)
Ritei Shibata:“离散模型选择”Proc.of Contemporary Multivariate Analysis。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Ritei Shibata and M.Takagiwa: "Consistency of frequency estimate based on wavelet transform" Journal of Time Series Analysis. 18. 641-662 (1997)
Ritei Shibata 和 M.Takagiwa:“基于小波变换的频率估计的一致性”时间序列分析杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Ritei Shibata and R.Miura: "Decomposition of Japanese Yen interest rate data" Financial Engineering and the Japanese Markets. 4. 125-14〓 (1997)
Ritei Shibata 和 R.Miura:“日元利率数据的分解”金融工程和日本市场 4. 125-14〓 (1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Ritei Shibata and M.Takajwa: "Consistency of frequency estimate based on wavelet transform" Joural of Tire Series Analysis. 18. 641-662 (1997)
Ritei Shibata 和 M.Takajwa:“基于小波变换的频率估计的一致性”轮胎系列分析杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHIBATA Ritei其他文献

SHIBATA Ritei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHIBATA Ritei', 18)}}的其他基金

Theory and Practice of Data Visualization for Modeling Complex Large Scale Data
复杂大规模数据建模的数据可视化理论与实践
  • 批准号:
    19300097
  • 财政年份:
    2007
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Powerful Strategy for Point Process Data Analysis and the Archive of Models
用于点过程数据分析和模型存档的强大策略
  • 批准号:
    15300095
  • 财政年份:
    2003
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Implimentation of InterDatabase through DandD Agent for Advanced Data Analysis
通过 DandD Agent 实现 InterDatabase 进行高级数据分析
  • 批准号:
    13558024
  • 财政年份:
    2001
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Effectiveness of Kullback-Leibler Information As A Measure of Dependence
Kullback-Leibler 信息作为依赖性衡量标准的有效性
  • 批准号:
    12480063
  • 财政年份:
    2000
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
DEVELOPMENT OF D&D SUPPORT SOFTWARE
D&D支持软件的开发
  • 批准号:
    10558037
  • 财政年份:
    1998
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Development of Enuironment for Data Analysis by S
S数据分析环境的开发
  • 批准号:
    06680289
  • 财政年份:
    1994
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Universal Model Selection Criteria for Scientific Machine Learning
科学机器学习的通用模型选择标准
  • 批准号:
    DE240100144
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Discovery Early Career Researcher Award
Advanced Monte Carlo methods for inference and model selection of dynamic systems
用于动态系统推理和模型选择的高级蒙特卡罗方法
  • 批准号:
    559741-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Extremal graphical model selection
极值图形模型选择
  • 批准号:
    568313-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Postdoctoral Fellowships
Regularization and approximation: statistical inference, model selection, and large data
正则化和近似:统计推断、模型选择和大数据
  • 批准号:
    RGPIN-2021-02618
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Discovery Grants Program - Individual
Bayesian Methods, Computation, Model Selection and Goodness of Fit with Complex Data
复杂数据的贝叶斯方法、计算、模型选择和拟合优度
  • 批准号:
    RGPIN-2018-05008
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Sparse Model Selection for Nonlinear Evolution Equations
职业:非线性演化方程的稀疏模型选择
  • 批准号:
    2331100
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Continuing Grant
Distance-based robust inferences and model selection for semiparametric models
半参数模型的基于距离的鲁棒推理和模型选择
  • 批准号:
    RGPIN-2018-04328
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Discovery Grants Program - Individual
Developing methods for model selection in causal health analyses.
开发因果健康分析中模型选择的方法。
  • 批准号:
    2741534
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Studentship
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
  • 批准号:
    RGPIN-2018-05849
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
  • 批准号:
    RGPIN-2018-06466
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了