Mathematical modeling for high-dimensional nonlinear data and its application to the analysis of complex phenomena
高维非线性数据的数学建模及其在复杂现象分析中的应用
基本信息
- 批准号:13440034
- 负责人:
- 金额:$ 7.49万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent years the wide availability of fast and inexpensive computers enables us to accumulate a huge amount of data, and the effective use of databases are required in order to create innovation and values and to solve important science and engineering problems. Statistical challenges posed by large data sets arise in such areas as genome databases in life science, remote-sensing data from earth observing satellites, POS data in marketing and economic data. Through this research project we have investigated the problem of constructing various types of statistical nonlinear modeling strategies and obtained the results in the following :(1)We proposed nonlinear modeling techniques ; determining a set of basis functions, estimating the unknown parameters by regularization and then evaluating the constructed model to select a suitable one among competing models. We describe modeling based on functional approach and introduce a generalized information criterion. Bayesian information criterion BIC is also extended in such a way that it can be applied to the evaluation of models estimated by the method of regularization.(2)We proposed functional regression modeling and functional discriminant analysis, using Gaussian radial basis functions along with the technique of regularization. The proposed method was applied to the analysis of yeast cell cycle gene expression data.(3)Approximate selection of embedding dimension and delay time have been a central issue of chaotic dynamical systems. We introduced the delay time and consider the estimation of embedding dimension and delay time.(4)Model selection criteria were presented for stochastic process from an information-theoretic approach. We derived asymptotic expansions for the distributions of statistics related to small diffusions and applied it to option pricing in economics.
近年来,快速而廉价的计算机的广泛使用使我们能够积累大量的数据,有效地使用数据库是创造创新和价值以及解决重要科学和工程问题所必需的。在生命科学中的基因组数据库、地球观测卫星的遥感数据、营销中的POS数据和经济数据等领域,大型数据集带来了统计挑战。通过本课题的研究,我们研究了各种统计非线性建模策略的构造问题,取得了以下成果:(1)提出了非线性建模技术,确定一组基函数,通过正则化估计未知参数,然后对所构造的模型进行评价,在竞争模型中选择合适的模型。我们描述了建模的基础上功能的方法,并介绍了一个广义的信息准则。本文还对贝叶斯信息准则BIC进行了推广,使其可以应用于正则化方法估计的模型的评价。(2)We提出了函数回归建模和函数判别分析,使用高斯径向基函数沿着与正则化技术。将该方法应用于酵母细胞周期基因表达数据的分析。(3)嵌入维数和延迟时间的近似选取一直是混沌动力系统研究的热点问题。我们引入延迟时间,并考虑嵌入维数和延迟时间的估计。(4)从信息论的角度给出了随机过程的模型选择准则。我们导出了与小扩散相关的统计分布的渐近展开式,并将其应用于经济学中的期权定价。
项目成果
期刊论文数量(190)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ichikawa, M., Konishi, S.: "Asymptotic expansions and bootstrap approximations in factor analysis"Journal of Multivariate Analysis. 81. 47-66 (2002)
Ichikawa, M., Konishi, S.:“因子分析中的渐近展开和自举近似”多元分析杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Notes on optimal allocation for fixed size confidence regions of the difference of two multinormal means
关于两个多重正态均值之差的固定大小置信区域的最佳分配的注意事项
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Hyakutake;H.
- 通讯作者:H.
Asymptotic expansions and bootstrap approximations in factor analysis
因子分析中的渐近展开式和自举近似
- DOI:
- 发表时间:2002
- 期刊:
- 影响因子:0
- 作者:Ichikawa;M.;Konishi;S.
- 通讯作者:S.
Yanagawa, T.: "Assessing the joint effects of chlorinated dioxins, some pesticides and poly-chlorinated biphenyls on thyroid hormone status in Japanese breast-fed infants"Environmetrics. 14. 121-128 (2003)
Yanakawa, T.:“评估氯化二恶英、某些农药和多氯联苯对日本母乳喂养婴儿甲状腺激素状态的联合影响”环境计量学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KONISHI Sadanori其他文献
KONISHI Sadanori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KONISHI Sadanori', 18)}}的其他基金
Theoretical developments of sparse modeling and multivariate analysis techniques
稀疏建模和多元分析技术的理论发展
- 批准号:
16K00057 - 财政年份:2016
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear modeling based on high-dimensional data
基于高维数据的非线性建模
- 批准号:
21300106 - 财政年份:2009
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Nonlinear multivariate analysis based on high-dimensional data and its application
基于高维数据的非线性多元分析及其应用
- 批准号:
17300089 - 财政年份:2005
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
NONLINEAR STATISTICAL MODELING AND MODEL EVALUATION
非线性统计建模和模型评估
- 批准号:
09440082 - 财政年份:1997
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Evaluation of Predictive Distributions based on Information and Entropy
基于信息和熵的预测分布评估
- 批准号:
08454043 - 财政年份:1996
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Computer-intensive statistical methods in multivariate analysis
多变量分析中的计算机密集型统计方法
- 批准号:
05680258 - 财政年份:1993
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Multivariate Statistical Methods for Nonnormal Populations
非正态总体的多元统计方法
- 批准号:
61530018 - 财政年份:1986
- 资助金额:
$ 7.49万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)














{{item.name}}会员




