Evaluation of Predictive Distributions based on Information and Entropy
基于信息和熵的预测分布评估
基本信息
- 批准号:08454043
- 负责人:
- 金额:$ 1.54万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1996
- 资助国家:日本
- 起止时间:1996 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of the research is to investigate the problem of evaluating the goodness of statistical models from an information-theoretic point of view. The following are the main results obtained through this research project extending over 1996.1. Information criteria were proposed for evaluating statistical models constructed by various estimation procedures when the specified family of probability distributions does not contain the distribution generating the data. The proposed criteria are applied to the evaluation of models estimated by maximum likelihood, robust, penalized likelihood, Bays procedures, etc. In regard to computer-intensive methods the theoretical and practical aspects of the use of the bootstrap were investigated in model evaluation problems. 2. Equivalence tests for binary data with pair-matched design in clinical trials were explored. Eight tests were investigated altogether including those tests constructed by the GSK method, the tests which use estimated null variances among others. 3. A numerical enclosure method with guaranteed L^* error bounds for the solution of nonlinear elliptic problems of second order were investigated. Using an a posteriori error estimates for the approximate solution of the problem with higher order C^0-finite element, it was shown that we can obtain the guaranteed L^* error boundswith high accuracy. 4. The verification procedure were extended to nondifferentiable nonlinear elliptic problem related to MHD equilibra, and a computing algorithm which automatically encloses the solution with guaranteed error bounds was constructed. 5. Unified construction procedure of class of rank tests were investigated and the asymptotic normality was proved for test statistics for the two-sample problem derived by the convex sum distance.
本研究的目的是从信息论的观点探讨统计模型的优度评估问题。以下是1996年通过这一研究项目取得的主要成果。当特定的概率分布族不包含产生数据的分布时,提出了用于评估由各种估计程序构造的统计模型的信息准则。所提出的标准适用于评估模型估计的最大似然法,强大的,惩罚似然,海湾程序等方面的计算机密集型的方法的理论和实践方面的使用的引导模型评估问题进行了研究。2.探讨了临床试验中配对设计二元数据的等效性检验。总共研究了八个测试,包括通过GSK方法构建的测试、使用估计零方差的测试等。3.研究了一种求解二阶非线性椭圆型方程的数值封闭方法,该方法保证了L^* 误差界。利用高阶C^0-有限元近似解的后验误差估计,证明了我们可以得到高精度的保证L^* 误差界。4.将验证过程推广到与MHD平衡点相关的不可微非线性椭圆问题,构造了一个自动封闭解且保证误差界的计算算法. 5.研究了秩检验类的统一构造过程,证明了由凸和距离导出的两样本问题的检验统计量的渐近正态性。
项目成果
期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tsuchiya, T.: "Numerical verification of solutions of parametrized nonlinear boundary value problems with turning points" To appear in Japan Journal of Industrial and Applied Mathematics.
Tsuchiya, T.:“带转折点的参数化非线性边值问题解的数值验证”发表在《日本工业与应用数学杂志》上。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Morikawa T.Yoshimura I.: "Equivalence tests for pair-matched binary data" Bull.of Informatics and Cybernetics. Vol.28, No.1. 31-45 (1996)
Morikawa T.Yoshimura I.:“配对二进制数据的等价测试”Bull.of 信息学和控制论。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Endoh, A.: "A proposal for testing equivalence or more than equivalence for pair-matched case in comparative clinical trials" Japanese J of Applied Statistics. Vol.24. 59-73 (1996)
Endoh, A.:“在比较临床试验中测试配对病例的等效性或大于等效性的提案”《日本应用统计学杂志》。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Morikawa,T.: "Equivalence tests for pair-matched binary data" Bull.of Informatics and Cybernetics. 28・1. 31-45 (1996)
Morikawa, T.:“配对二进制数据的等价测试”Bull.of 信息学和控制论 28・1 (1996)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Morikawa T.: "Equivalence tests for pair-matched binary data" Bull.of Informatics and Cybernetics. 28. 31-45 (1996)
Morikawa T.:“配对二进制数据的等价测试”Bull.of 信息学和控制论。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KONISHI Sadanori其他文献
KONISHI Sadanori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KONISHI Sadanori', 18)}}的其他基金
Theoretical developments of sparse modeling and multivariate analysis techniques
稀疏建模和多元分析技术的理论发展
- 批准号:
16K00057 - 财政年份:2016
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear modeling based on high-dimensional data
基于高维数据的非线性建模
- 批准号:
21300106 - 财政年份:2009
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Nonlinear multivariate analysis based on high-dimensional data and its application
基于高维数据的非线性多元分析及其应用
- 批准号:
17300089 - 财政年份:2005
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical modeling for high-dimensional nonlinear data and its application to the analysis of complex phenomena
高维非线性数据的数学建模及其在复杂现象分析中的应用
- 批准号:
13440034 - 财政年份:2001
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
NONLINEAR STATISTICAL MODELING AND MODEL EVALUATION
非线性统计建模和模型评估
- 批准号:
09440082 - 财政年份:1997
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Computer-intensive statistical methods in multivariate analysis
多变量分析中的计算机密集型统计方法
- 批准号:
05680258 - 财政年份:1993
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Multivariate Statistical Methods for Nonnormal Populations
非正态总体的多元统计方法
- 批准号:
61530018 - 财政年份:1986
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Bootstrap Methods in High Dimensions: Complex Dependence Structures and Refinements
高维引导方法:复杂的依赖结构和改进
- 批准号:
2014636 - 财政年份:2020
- 资助金额:
$ 1.54万 - 项目类别:
Standard Grant
Bootstrap Methods in Modern Settings: Inference and Computation
现代环境中的引导方法:推理和计算
- 批准号:
1915786 - 财政年份:2019
- 资助金额:
$ 1.54万 - 项目类别:
Continuing Grant
Bootstrap methods for testing and forecasting with estimated factors
使用估计因素进行测试和预测的 Bootstrap 方法
- 批准号:
RGPIN-2014-06482 - 财政年份:2018
- 资助金额:
$ 1.54万 - 项目类别:
Discovery Grants Program - Individual
Bootstrap methods for testing and forecasting with estimated factors
使用估计因素进行测试和预测的 Bootstrap 方法
- 批准号:
RGPIN-2014-06482 - 财政年份:2017
- 资助金额:
$ 1.54万 - 项目类别:
Discovery Grants Program - Individual
Bootstrap methods for testing and forecasting with estimated factors
使用估计因素进行测试和预测的 Bootstrap 方法
- 批准号:
RGPIN-2014-06482 - 财政年份:2016
- 资助金额:
$ 1.54万 - 项目类别:
Discovery Grants Program - Individual
Bootstrap methods for testing and forecasting with estimated factors
使用估计因素进行测试和预测的 Bootstrap 方法
- 批准号:
RGPIN-2014-06482 - 财政年份:2015
- 资助金额:
$ 1.54万 - 项目类别:
Discovery Grants Program - Individual
Bootstrap methods for testing and forecasting with estimated factors
使用估计因素进行测试和预测的 Bootstrap 方法
- 批准号:
RGPIN-2014-06482 - 财政年份:2015
- 资助金额:
$ 1.54万 - 项目类别:
Discovery Grants Program - Individual
Bootstrap methods for testing and forecasting with estimated factors
使用估计因素进行测试和预测的 Bootstrap 方法
- 批准号:
RGPIN-2014-06482 - 财政年份:2014
- 资助金额:
$ 1.54万 - 项目类别:
Discovery Grants Program - Individual
The improvement of investment approaches by developing and applying bootstrap methods to innovative evolutionary kernel-based subset time-series modelling.
通过开发引导方法并将其应用于创新的基于进化内核的子集时间序列建模来改进投资方法。
- 批准号:
LP0883801 - 财政年份:2009
- 资助金额:
$ 1.54万 - 项目类别:
Linkage Projects
Saddlepoint and Bootstrap Methods in Stochastic Systems and Related Fields
随机系统及相关领域中的鞍点和自举方法
- 批准号:
0750451 - 财政年份:2007
- 资助金额:
$ 1.54万 - 项目类别:
Continuing Grant