Research on the structure and stability of the dynamical system describing phase transition phenomena
描述相变现象的动力系统的结构和稳定性研究
基本信息
- 批准号:13440052
- 负责人:
- 金额:$ 7.36万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The subjects of this project are the following :(1)Modelings of phase transition phenomena with their mathematical theory(2)Formulations of the related optimal control problems and numerical simulations(3)Return of the research results to the school educationConcerning (1), on the basis of the fundamental laws of the thermo-mechanics, we investigated the structure (phase change, component separation, damage evolution, ordering of atoms) of materials from the view-point of the theory of dymanical systems. Especially, during the last two years (2003-2004) of the project, we treated a class of models for irreversible phase change phenomena, taking account of the process of damage, and evolved its mathematical theory. In our research the subdifferential theory, which have been accumulated for these 15 years, worked very well and we had a big progress more than we expected. Concerning (2), proposing some formulations of optimal control problems in which control parameters are described by a class of hysteresis functions, we finished almost the theoretical part of the problems and tried partially their numerical tests. It was pointed out that there are still some questions which should be improved. Many papers treating subjects (1)and (2)were published and we organized two international conferences during this research project.As far as (3)is concerned, many practices were reported in the meetings "Mathematical analysis of phase transitions and their related mathematics education" which we organized every year. We paid our attention to time-dependent phenomena noticed easily in our daily lives, verifying very carefully their value-added educational aspects as teaching materials of mathematics or sciences for the secondary school. We expect that this research enables to provide new teaching materials by which students can perceive usefulness of mathematics.
该项目的主题如下:(1)相关的数学理论(2)相关最佳控制问题和数值模拟的模型(3)研究结果回报到学校教育(1)的基础上,基于热力学的基本法律,我们研究了材料的理论,损坏的理论,损坏的理论,损坏的理论,损害的理论,损害的理论,损害的理论,相互分化,相互分裂,相互分化,相互分裂,相互分化,相互作用。堤防系统。尤其是,在该项目的过去两年(2003-2004)中,我们处理了一类用于不可逆的相变现象的模型,考虑了损害的过程,并进化了其数学理论。在我们的研究中,这15年来积累的细分理论效果很好,我们取得的进步比我们预期的要多。关于(2),提出了一些最佳控制问题的公式,其中控制参数由一类滞后功能描述,我们几乎完成了问题的理论部分,并部分尝试了其数值测试。有人指出,仍然有一些问题应该得到改善。许多论文处理了受试者(1)和(2),我们在此研究项目中组织了两次国际会议。就(3)而言,在会议上报告了许多实践“对相位过渡及其相关数学教育的数学分析”,我们每年都会组织这些实践。我们关注的是与时间相关的现象在我们的日常生活中很容易注意到,并非常仔细地验证了他们作为中学数学或科学的教学材料的增值教育方面。我们希望这项研究使学生能够通过这些新的教材来感知数学的有用性。
项目成果
期刊论文数量(80)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
剣持 信幸, 白川 健: "Stability for a parabolic variational inequality associated with total variation functional"Funkcialaj Ekvacioj. Vol.44. 119-137 (2001)
Nobuyuki Kenmochi、Ken Shirakawa:“与总变分泛函相关的抛物线变分不等式的稳定性”Funkcialaj Ekvacioj Vol.44 (2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Degenerate parabolic equations with convection in non-cylindrical domains
非圆柱域中对流的简并抛物线方程
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:深尾武史;剣持信幸
- 通讯作者:剣持信幸
Nonlinear partial differential equations and their applications
- DOI:
- 发表时间:1998
- 期刊:
- 影响因子:0
- 作者:D. Cioranescu;J. Lions
- 通讯作者:D. Cioranescu;J. Lions
剣持 信幸, 白川 健: "Stability for a phase field model with the total variation functional as the interfacial energy"Nonlinear Analysis. (掲載予定). (2002)
Nobuyuki Kenmochi、Ken Shirakawa:“以总变差函数作为界面能量的相场模型的稳定性”非线性分析(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
伊藤 昭夫, 剣持 信幸, 山崎 教昭: "Time-dependent attractors of bounded dynamical systems generated by subdifferentials"Communications in Applied Analysis. Vol.5. 403-419 (2001)
Akio Ito、Nobuyuki Kenmochi、Noriaki Yamazaki:“次微分生成的有界动力系统的时间相关吸引子”应用分析通讯第 5 卷(2001 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KENMOCHI Nobuyuki其他文献
KENMOCHI Nobuyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KENMOCHI Nobuyuki', 18)}}的其他基金
Plans of classes of mathematical activities based on skills of making goods
基于制造商品技能的数学活动课程计划
- 批准号:
23650519 - 财政年份:2011
- 资助金额:
$ 7.36万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Studies on dynamical systems of nonlinear phenomena with energy dissipation and the theory of stability
能量耗散非线性现象动力系统及稳定性理论研究
- 批准号:
18340045 - 财政年份:2006
- 资助金额:
$ 7.36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Research of Nonlinear Phenomena with Phase Transitions
相变非线性现象的数学研究
- 批准号:
09640154 - 财政年份:1997
- 资助金额:
$ 7.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
随机时滞切变系统的稳定性、分叉和混沌动力学的理论研究以及在复杂动力学系统中的应用
- 批准号:61273014
- 批准年份:2012
- 资助金额:62.0 万元
- 项目类别:面上项目
基于侧向非平稳约束动力学系统的车辆附着极限态稳定性控制研究
- 批准号:51175498
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Analysis and stability of dynamical system models over networks
网络动力系统模型的分析和稳定性
- 批准号:
1211691 - 财政年份:2012
- 资助金额:
$ 7.36万 - 项目类别:
Standard Grant
Dynamical Stability and Dynamical Evolution of Extra-Solar Planetary System
太阳系外行星系统的动力学稳定性与动力学演化
- 批准号:
12640241 - 财政年份:2000
- 资助金额:
$ 7.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on global property of holomorphic vector fields
全纯向量场的全局性质研究
- 批准号:
06640181 - 财政年份:1994
- 资助金额:
$ 7.36万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
The Dynamical Stability of the Solar System
太阳系的动态稳定性
- 批准号:
7507789 - 财政年份:1976
- 资助金额:
$ 7.36万 - 项目类别:
Standard Grant