Efficient statistical parameter calibration for complex structural dynamics systems underconsideration of model uncertainty

考虑模型不确定性的复杂结构动力学系统的高效统计参数标定

基本信息

项目摘要

Increasing the virtualization of the industrial product development process requires accurate mathematical models for the description of the dynamical behavior of structural systems. At the same time, ever-shorter development cycles as well as an increasing number of product recalls and the resulting economic damage pose a challenge for the industry to improve the expressiveness of mathematical models in the decision-making. The consideration of the data uncertainty and model uncertainty inherent to the models is therefore getting more and more important. By means of a statistical parameter calibration, the uncertainty of the model parameters can be reduced and quantified simultaneously in order to increase the predictive accuracy of the model. Methods for statistical parameter calibration presume computationally inexpensive models or use fast surrogate models of complex models that can be evaluated thousand fold. Novel multi-fidelity methods combine the numerous evaluations of an inexpensive low-fidelity model with a few evaluations of an expensive, more precise high-fidelity model. Thus, the computational effort for a statistical parameter calibration can be reduced while at the same time ensuring a high precision of the results. Consequently, also complex structural models can be calibrated efficiently. However, existing approaches neglect the model uncertainty, resulting in the calibration to be biased and the physical parameters to forfeit its meaning. Therefore, the goal of the project is the development of a multi-fidelity method for the efficient statistical parameter calibration of computationally expensive models under consideration of model uncertainty. The testing of the method on the demonstrator of the CRC 805, which has been designed with similar requirements as an airplane landing gear will enable the transferability on comparable structural systems. By means of the developed method, it will be possible to quantify the data uncertainty as well as model uncertainty for computationally intensive models.
工业产品开发过程的日益虚拟化需要精确的数学模型来描述结构系统的动态行为。与此同时,不断缩短的开发周期以及越来越多的产品召回和由此造成的经济损失对该行业提出了挑战,即提高数学模型在决策中的表达能力。因此,考虑模型固有的数据不确定性和模型不确定性变得越来越重要。通过对模型参数进行统计校正,可以同时降低模型参数的不确定性,并将其量化,从而提高模型的预测精度。统计参数校准方法假定计算成本较低的模型,或者使用复杂模型的快速替代模型,这些模型可以被评估数千倍。新的多保真方法结合了对廉价的低保真模型的大量评估和对昂贵的、更精确的高保真模型的一些评估。因此,可以减少统计参数校准的计算量,同时确保结果的高精度。因此,也可以有效地校准复杂的结构模型。然而,现有的方法忽略了模型的不确定性,导致了标定的偏差和物理参数的丧失意义。因此,该项目的目标是开发一种多保真方法,用于在考虑模型不确定性的情况下对计算昂贵的模型进行有效的统计参数校准。在CRC805的演示器上对该方法进行了测试,该演示器的设计要求与飞机起落架类似,将使该方法能够在类似的结构系统上移植。通过所开发的方法,将有可能量化数据不确定性以及计算密集型模型的模型不确定性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Tobias Melz其他文献

Professor Dr.-Ing. Tobias Melz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Tobias Melz', 18)}}的其他基金

Principles for the design of components exposed to pressurized hydrogen taking into account material-related damage mechanisms
暴露于加压氢气的部件的设计原则,考虑到与材料相关的损坏机制
  • 批准号:
    271741688
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Corrosion fatigue in biogenic fuels in the very high cycle fatigue regime
极高循环疲劳状态下生物燃料的腐蚀疲劳
  • 批准号:
    244527137
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于随机网络演算的无线机会调度算法研究
  • 批准号:
    60702009
  • 批准年份:
    2007
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Statistical Methods for Data Integration and Applications to Genome-wide Association Studies
数据集成的统计方法及其在全基因组关联研究中的应用
  • 批准号:
    10889298
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Statistical methods for analysis of high-dimensional mediation pathways
高维中介路径分析的统计方法
  • 批准号:
    10582932
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Scalable Computational Methods for Genealogical Inference: from species level to single cells
用于谱系推断的可扩展计算方法:从物种水平到单细胞
  • 批准号:
    10889303
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Statistical methods to characterize causal mechanisms by which air pollution affects the recurrence of cardiovascular events
描述空气污染影响心血管事件复发因果机制的统计方法
  • 批准号:
    10660281
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The transcriptome-wide impact of biological perturbations
生物扰动对转录组的影响
  • 批准号:
    10672663
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Bayesian modeling of multivariate mixed longitudinal responses with scale mixtures of multivariate normal distributions
具有多元正态分布尺度混合的多元混合纵向响应的贝叶斯建模
  • 批准号:
    10730714
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Computational modeling to evaluate socio-structural interventions for HIV and substance use
用于评估艾滋病毒和药物滥用的社会结构干预措施的计算模型
  • 批准号:
    10789121
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Collaborative Research: DMS/NIGMS 1: Identifiability investigation of Multi-scale Models of Infectious Diseases
合作研究:DMS/NIGMS 1:传染病多尺度模型的可识别性研究
  • 批准号:
    10794480
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Developing a dynamic modeling framework for surveillance, prediction, and real-time resource allocation to reduce health disparities during Covid-19 and future pandemics
开发用于监测、预测和实时资源分配的动态建模框架,以减少 Covid-19 和未来大流行期间的健康差距
  • 批准号:
    10584876
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Statistical Reconstruction of Highly Undersampled DCE MRI with Constrained Optimization for Parameter Estimation
具有参数估计约束优化的高度欠采样 DCE MRI 统计重建
  • 批准号:
    569544-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了