Development of Time Series Analysis Software Based on State-Space Modeling
基于状态空间建模的时间序列分析软件开发
基本信息
- 批准号:13558025
- 负责人:
- 金额:$ 7.04万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
By using the state-space model, most of the familiar time series models can be treated. It also provides efficient recursive filtering algorithm for state estimation, prediction, smoothing and parameter estimation based on the likelihood. In this project research, we developed a time series analysis software based on this state-space approach. Further, we developed a Web-version of the softwares and applied the method to various real-world problems. The major outcomes are as follows:1. Development of filtering and parameter estimation method.We refined the algorithms of the Monte Carlo filter and the Gaussian-sum filter for efficient computation of conditional state distributions. We also developed parallel algorithm for computing estimation of the state and some algorithms for simultaneous estimation of the state and the unknown parameters.2. We developed generic softwares for Monte Carlo filtering and self-organizing filter. Specific application softwares were also developed for trend estimation, estimation of stochastic volatility, trend and volatility model and power contribution analysis. Web-software for the application software on user's Web site without installing these softwares.3. The developed methods and softwares were applied to various real-world problems such as the seismology, earth-magnetography, finance, macro-economics, marketing, human behavior, ship engineering, and various other complex systems and obtained useful results in prediction, control and knowledge discovery.
利用状态空间模型可以处理大多数常见的时间序列模型。它还为状态估计、预测、平滑和基于似然的参数估计提供了高效的递归滤波算法。在本项目研究中,我们开发了一个基于该状态空间方法的时间序列分析软件。此外,我们开发了该软件的Web版本,并将该方法应用于各种现实世界的问题。主要研究成果如下:1.滤波和参数估计方法的发展:改进了蒙特卡罗滤波和高斯和滤波的算法,提高了条件状态分布的计算效率。给出了状态估计的并行算法和一些同时估计状态和未知参数的算法。我们开发了蒙特卡罗滤波和自组织滤波的通用软件。开发了用于趋势估计、随机波动率估计、趋势和波动率模型以及功率贡献分析的具体应用软件。Web-用于用户网站上的应用软件的软件,不安装这些软件。所开发的方法和软件被应用于地震学、地磁学、金融学、宏观经济学、市场营销、人类行为、船舶工程等各种复杂系统的实际问题,在预测、控制和知识发现方面取得了有用的结果。
项目成果
期刊论文数量(166)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kamiyama, M., Higuchi, T.: "Adjustment of non-uniform sampling locations in spatial datasets with dynamic programming and non-linear filtering"IEEE Signal Processing Magazine, Special Issue on Signal Processing for Mining Information. May(印刷中). (2004)
Kamiyama, M., Higuchi, T.:“通过动态编程和非线性滤波调整空间数据集中的非均匀采样位置”IEEE 信号处理杂志,挖掘信息信号处理特刊 5 月(正在出版)。 (2004)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Method and Application of Processing in Seismic Network Operations, Lecture Notes in Earth Sciences
地震台网运行处理方法及应用,地球科学讲义
- DOI:
- 发表时间:2002
- 期刊:
- 影响因子:0
- 作者:Takanami;T.
- 通讯作者:T.
Takanami, T., Kitagawa, G.: "Methods and Applications of Signal Processing in Seismic Network Operations, Lecture Notes in Earth Sciences"Springer-Verlag, Heidelberg. 268 (2002)
Takanami, T., Kitakawa, G.:“地震台网运行中信号处理的方法和应用,地球科学讲义”Springer-Verlag,海德堡。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nagao, H., T.Higuchi, T.Iyemori, T.Araki: "Automatic Detection of Geomagnetic Jerks by Applying a Statistical Time Series Model to Geomagnetic Monthly Means"Progresses in Discovery Science, Lecture Notes in Computer Science, Springer-Verlag. (2001)
Nagao, H.、T.Higuchi、T.Iyemori、T.Araki:“通过将统计时间序列模型应用于地磁月度平均值来自动检测地磁急动”,发现科学进展,计算机科学讲义,Springer-Verlag。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Adjustment of non-uniform sampling locations in spatial datasets with dynamic programming and non-linear filtering
通过动态规划和非线性滤波调整空间数据集中的非均匀采样位置
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Kamiyama;M.
- 通讯作者:M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KITAGAWA Genshiro其他文献
KITAGAWA Genshiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KITAGAWA Genshiro', 18)}}的其他基金
The Infrastructure Development of Statistical Analysis for Evidence-based Policy Making, and Verifying Validity
循证政策制定和验证有效性的统计分析基础设施开发
- 批准号:
22240030 - 财政年份:2010
- 资助金额:
$ 7.04万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
超高次元時系列における予測および情報抽出の方法
超高维时间序列预测与信息提取方法
- 批准号:
14380127 - 财政年份:2002
- 资助金额:
$ 7.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on the Methodology of Information Extraction and Knowledge Discovery Based on Statistical Time Seeries Modeling
基于统计时间序列建模的信息抽取与知识发现方法研究
- 批准号:
12680321 - 财政年份:2000
- 资助金额:
$ 7.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of Parameter Estimation of the State Space Model and its Applications
状态空间模型参数估计及其应用研究
- 批准号:
09680318 - 财政年份:1997
- 资助金额:
$ 7.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on Seasonal Adjustment of Economic Time Series
经济时间序列季节调整研究
- 批准号:
08045018 - 财政年份:1996
- 资助金额:
$ 7.04万 - 项目类别:
Grant-in-Aid for international Scientific Research
Research on Systemization of Time Series Analysis Software
时间序列分析软件系统化研究
- 批准号:
08558021 - 财政年份:1996
- 资助金额:
$ 7.04万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Research on Nemerical Methods in Time Series Analysis
时间序列分析中的数值方法研究
- 批准号:
06680295 - 财政年份:1994
- 资助金额:
$ 7.04万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Research on Integrated Time Series Analysis Softwares
综合时间序列分析软件研究
- 批准号:
63830002 - 财政年份:1988
- 资助金额:
$ 7.04万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research (B).
相似海外基金
Estimating the latent factors in financial time series by using Monte Carlo Filter
使用蒙特卡罗滤波器估计金融时间序列中的潜在因素
- 批准号:
18500222 - 财政年份:2006
- 资助金额:
$ 7.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




