Improvement and application of target approach for solving nonlinear knapsack type optimization problem
求解非线性背包型优化问题的目标法改进及应用
基本信息
- 批准号:14580397
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1) Application of the improved surrogate constraint method to non-separable nonconvex portfolio optimization problemThe Improved Surrogate Constraint method (ISC) was developed, which cane solve exactly and efficiently large-scale multi-constraints separable discrete optimization problems. We apply the ISC to the index optimization problem that 50 brands are selected from 1440 brands of Tokyo Stock Exchange 1st section listed (TOPIX) and track the market index. This means that an extremely large-scale problem of a practical scale was able to be solved about the index fund problem. Moreover, it succeeded in making the index-plus-alpha portfolio. This result appeared in the Nikkan Kogyo Shimbun article Friday, November 18, 2005.2) Exact method for solving multi-constraints separable discrete optimization problemsIn order to apply the ISC method to a larger-scale problem, we tried to use average information (entropy) and to divide an original problem into small subproblems. The test problem of Chu and Beasley are used to show the effectiveness of the present method. The method is compared with business high speed software CPLEX V.9.0 by using 30 0-1 knapsack problems, which are well known as difficult problems. with 500 variables. The computational results show that the ISC using the Problem Partition is nine times as fast as CPLEX on the average and succeeds in economizing the memory.3) Multi-objective optimization and parallel computationWe developed a new solution algorithm based on the ISC for solving multi-objective discrete optimization problems. It is scheduled to apply the present algorithm to practical multi-objective problems that the existing methods are quite difficult to solve. Moreover, a estimation technique of the difficulty degree of the problem that used entropy was newly developed. This technology is scheduled to be applied to the problem partition method for the parallel computation.
1)改进的代理约束方法在不可分非凸投资组合优化问题中的应用提出了改进的代理约束方法(ISC),该方法能够精确、高效地求解大规模多约束可分离散优化问题。我们将ISC应用于指数优化问题,从东京证券交易所(TOPIX)的1440个品牌中选择50个品牌,并跟踪市场指数。这意味着指数基金问题能够解决一个具有实际规模的极大规模问题。此外,它还成功地建立了指数加阿尔法的投资组合。这一结果发表在2005年11月18日(星期五)的Nikkan Kogyo Shimbun文章中(5.2)求解多约束可分离离散优化问题的精确方法为了将ISC方法应用于更大规模的问题,我们尝试使用平均信息(熵)并将原始问题划分为小的子问题。用Chu和Beasley的测试问题验证了该方法的有效性。以30个众所周知的难解问题0-1背包问题与商业高速软件CPLEX V.9.0进行比较。有500个变量。计算结果表明,使用问题分区的ISC平均速度是CPLEX的9倍,并且成功地节省了内存。3)多目标优化与并行计算我们提出了一种基于ISC的求解多目标离散优化问题的新算法。计划将该算法应用于现有方法难以解决的实际多目标问题。此外,还提出了一种基于熵的问题难易度估计方法。该技术拟应用于并行计算的问题划分方法中。
项目成果
期刊论文数量(43)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Problem Partition Method for Multidimensional Nonlinear Knapsack Problems Using Estimated Problem Difficulty
一种基于估计问题难度的多维非线性背包问题划分方法
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Y.Nakagawa;Y.Isada;R.J.W.James
- 通讯作者:R.J.W.James
The Reliability Optimization Problems by Means of Improved Surrogate Constraints Method
改进代理约束法的可靠性优化问题
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:S.Kimura;Y.Isada;Y.Nakagawa
- 通讯作者:Y.Nakagawa
Enumerations Methods for Repeatedly Solving Multidimensional Knapsack Sub-Problems
反复求解多维背包子问题的枚举法
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:James;Nakagawa
- 通讯作者:Nakagawa
代理制約法における代理乗数決定のための改良Dyerアルゴリズムの特性評価
替代约束法中确定替代乘数的改进Dyer算法的特性评估
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:木村;太田垣;仲川
- 通讯作者:仲川
An improved surrogate constraints method for separable nonlinear integer programming
可分离非线性整数规划的改进代理约束方法
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Nakagawa
- 通讯作者:Nakagawa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAKAGAWA Yuji其他文献
Assessment of sustainable forest management of a mixed conifer-broadleaf forest by combinations of airborne Lidar and UAV observation
机载激光雷达和无人机观测相结合评估针阔混交林的可持续森林管理
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
FURUYA Naoyuki;HIRATA Yasumasa;OWARI Toshiaki;SAKAUE Daisuke;INUKAI Shinya;NAKAGAWA Yuji;TOHKUNI Masaki - 通讯作者:
TOHKUNI Masaki
NAKAGAWA Yuji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAKAGAWA Yuji', 18)}}的其他基金
Development of Japanese language education program for foreigners based on community engagement
基于社区参与的外国人日语教育项目的开发
- 批准号:
26770176 - 财政年份:2014
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Improvements of the target solution method and its application to social sciences
目标解法的改进及其在社会科学中的应用
- 批准号:
24500026 - 财政年份:2012
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Practical application of student observation system for the next generation of e-learning
下一代电子学习的学生观察系统的实际应用
- 批准号:
23501154 - 财政年份:2011
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Case study on the technology structure and the market competition in modern Russian mill industry
现代俄罗斯制粉厂技术结构与市场竞争案例研究
- 批准号:
23530409 - 财政年份:2011
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Expansion and Application of Discrete Optimization Software, HOPE
离散优化软件HOPE的扩展及应用
- 批准号:
19300003 - 财政年份:2007
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Multi-step and Multi-objective Optimization of EVs Charging through Coupled Power-traffic Simulation
通过电力-交通耦合仿真对电动汽车充电进行多步骤、多目标优化
- 批准号:
23K13513 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development and application of learning theory for uncertainty in Bayesian deep learning based on multi-objective optimization
基于多目标优化的贝叶斯深度学习不确定性学习理论发展及应用
- 批准号:
23K16948 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Game Theoretic Multi-Objective Optimization for Informed Patient Centered Care
博弈论多目标优化以患者为中心的知情护理
- 批准号:
545889-2020 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Postgraduate Scholarships - Doctoral
Study of distributed evolutionary computation for interrelated multi-objective optimization problems
相互关联的多目标优化问题的分布式进化计算研究
- 批准号:
22K12185 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-Objective Optimization of Chemical and Biochemical Processes
化学和生化过程的多目标优化
- 批准号:
RGPIN-2018-04433 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Converging Design Methodology: Multi-objective Optimization of Resilient Structural Spines
合作研究:融合设计方法:弹性结构脊柱的多目标优化
- 批准号:
2120684 - 财政年份:2021
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
Multi-Objective Optimization of Chemical and Biochemical Processes
化学和生化过程的多目标优化
- 批准号:
RGPIN-2018-04433 - 财政年份:2021
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Converging Design Methodology: Multi-objective Optimization of Resilient Structural Spines
合作研究:融合设计方法:弹性结构脊柱的多目标优化
- 批准号:
2120683 - 财政年份:2021
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
Automatic Configuration of Preference-based Evolutionary Multi-objective Optimization Algorithms
基于偏好的进化多目标优化算法的自动配置
- 批准号:
21K17824 - 财政年份:2021
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
An Adaptive Multi Objective Optimization Framework for Next Generation Resource Constrained Communication systems
下一代资源受限通信系统的自适应多目标优化框架
- 批准号:
RGPIN-2017-06525 - 财政年份:2021
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual