Research in fundamental properties of rewriting systems and advanced theorem proving systems

重写系统的基本性质和高级定理证明系统的研究

基本信息

  • 批准号:
    15500009
  • 负责人:
  • 金额:
    $ 1.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

Term rewriting systems (TRS) have received much attention in recent years, for they are an important computation model for reasoning and rewriting (computing) over a set of equations, and used in various applications such as automated theorem proving and software verification. However, many significant problems concerning TRS's which may be nonterminating or nonlinear remain open.In this research project we have first investigated some unsolved important problems for TRS's which may be nonterminating or nonlinear. Using new proof techniques we have succeeded in extending the previous results and obtaining new results on fundamental decision problems for non-right-linear TRSs of which sufficient conditions ensuring the decidability have not been known so far. That is, we have shown that for the class of semi-constructor TRSs, almost all problems remain undecidable even if we assume that these TRSs are monadic or linear, but the joinability, word and unification problems are decidable for confluent semi-constructor TRSs, although the reachability problem remains undecidable. We have also obtained sufficient conditions for ensuring the decidability of reachability. Next, we have pointed out that the proofs of undecidability of reachability and confluence for flat TRSs given by F.Jacqumard are incorrect and succeeded in obtaining repaired and significantly simpler proofs of these undecidability. These are negative answers to the open problems posed by G.Godoy et al.In this research project concerning automate theorem proving, we has established the theoretical foundation which is based on the final algebra approach and applicable to equations with higher-order function symbols. We have implemented an advanced theorem proving system based on this thory and our research results whose usefulness has been proven by applications to cryptographic protocol verification.
近年来,项重写系统(Term rewrite system, TRS)作为一种重要的对一组方程进行推理和重写(计算)的计算模型受到了广泛的关注,并被广泛应用于自动化定理证明和软件验证等领域。然而,关于非终止或非线性TRS的许多重大问题仍然没有解决。在本研究项目中,我们首先研究了非终止或非线性TRS的一些尚未解决的重要问题。利用新的证明技术,我们成功地推广了以前的结果,并获得了关于非右线性trs的基本决策问题的新结果。也就是说,我们证明了对于半构造类trs,即使我们假设这些trs是一元或线性的,几乎所有问题仍然是不可判定的,但是对于合流半构造类trs,可接合性、词和统一问题是可判定的,尽管可达性问题仍然是不可判定的。我们还得到了保证可达性可判定性的充分条件。其次,我们指出了F.Jacqumard给出的平面trs的可达性和合流性的不可判定性证明是不正确的,并成功地获得了这些不可判定性的修正的和明显更简单的证明。这些是G.Godoy等人提出的开放问题的否定答案。在这个关于自动定理证明的研究项目中,我们建立了基于最终代数方法的理论基础,并适用于具有高阶函数符号的方程。基于这一理论和研究成果,我们实现了一个先进的定理证明系统,其有效性已被应用于加密协议验证。

项目成果

期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The unification problem for confluent right-ground term rewriting systems
  • DOI:
    10.1016/s0890-5401(03)00022-1
  • 发表时间:
    2001-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Oyamaguchi;Yoshikatsu Ohta
  • 通讯作者:
    M. Oyamaguchi;Yoshikatsu Ohta
The Joinability and Related Decision Problems for Semi-Constructor TRSs
半构造器 TRS 的可连接性及相关决策问题
The Joinability and UnificationProblems for Confluent Semi-Constructor TRSs
汇合半构造器 TRS 的可连接性和统一性问题
On the open Problems Concerning Church-Rosser of Left-Linear Term Rewriting Systems
关于左线性项重写系统 Church-Rosser 的开放问题
The Joinability and Unification Problems for Confluent Semi-Constructor TRSs
汇合半构造器 TRS 的可连接性和统一性问题
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OYAMAGUCHI Michio其他文献

OYAMAGUCHI Michio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OYAMAGUCHI Michio', 18)}}的其他基金

Fundamental properties of rewriting systems and automated theorem proving
重写系统和自动定理证明的基本属性
  • 批准号:
    12680344
  • 财政年份:
    2000
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fundamental properties of rewriting systems and completion procedures
重写系统和完成程序的基本属性
  • 批准号:
    08680362
  • 财政年份:
    1996
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fundamental properties of rewriting systems and evaluation strategy of functional programs
重写系统的基本性质和功能程序的评估策略
  • 批准号:
    05680272
  • 财政年份:
    1993
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Design, formal semantics and verification of parallel programming languages
并行编程语言的设计、形式语义和验证
  • 批准号:
    02680022
  • 财政年份:
    1990
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了