Fundamental properties of rewriting systems and automated theorem proving
重写系统和自动定理证明的基本属性
基本信息
- 批准号:12680344
- 负责人:
- 金额:$ 1.73万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Term rewriting systems (TRS) have received much attention in recent years, for they are an important computation model for reasoning and rewriting (computing) over a set of equations, and used in various applications such as automated theorem proving and software verification. However, many significant problems concerning TRS's which may be nonterminating or nonlinear remain open.In this research project we have first investigated some unsolved problems for confluence (CR) of TRS's which may be nonterminating. Using new proof techniques we have succeeded in extending the previous results and generalizing the previous sufficient conditions for ensuring CR of left-linear TRS's. Next, we have shown that there exists a subclass S of TRS's satisfying the following conditions (a)〜(c).(a) There exists a transformation procedure which takes an arbitrary TRS and produces an equivalent TRS in S,(b) S is computationally universal, and(c) a sufficient condition for ensuring CR of any TRS in S which enables us to construct a completion procedure can be obtained.Moreover, we have constructed a new completion procedure using the above sufficient condition for CR of the class S and established the theoretical foundation of automated theorem proving based on this completion procedure. We have implemented a new theorem proving system based on these results and proved its usefulness.In this research project we have also investigated the unification problem of TRS's which is one of the most important ones. We have shown that the unification problem for confluent right-ground TRS's is decidable. By extending this proof technique we have proven that the unification problem is decidable for confluent simple TRS's, but it has been shown to be undecidable for confluent monadic TRS's.
术语重写系统(TRS)近年来受到广泛关注,因为它们是对一组方程进行推理和重写(计算)的重要计算模型,并用于自动定理证明和软件验证等各种应用。然而,许多关于可能是非终止或非线性的TRS的重要问题仍然悬而未决。在这个研究项目中,我们首先研究了一些可能是非终止的TRS汇合(CR)的未解决问题。使用新的证明技术,我们成功地扩展了先前的结果并推广了先前确保左线性 TRS 的 CR 的充分条件。接下来,我们证明存在满足以下条件(a)〜(c)的TRS的子类S。(a)存在一个变换过程,它采用任意TRS并在S中产生等效的TRS,(b)S在计算上是通用的,以及(c)确保S中任何TRS的CR的充分条件,使我们能够构造一个完成过程。此外,我们构造了一个新的完成过程 利用上述S类CR的充分条件,建立了基于该完成过程的自动定理证明的理论基础。我们基于这些结果实现了一个新的定理证明系统,并证明了它的有效性。在这个研究项目中,我们还研究了TRS的统一问题,这是最重要的问题之一。我们已经证明,汇合右地面 TRS 的统一问题是可判定的。通过扩展这种证明技术,我们已经证明统一问题对于汇合简单 TRS 是可判定的,但对于汇合单子 TRS 来说是不可判定的。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Oyamaguchi,M. and Ohta,Y.: "The Unification Problem for Confluent Right-Ground Term Rewriting Systems"Proc.12th Rewriting Techniques and Applications, Lecture Notes in Computer Science. 2051. 246-260 (2001)
小山口,M.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
OYAMAGUCHI, M.: "The Unification Problem for Confluent Right-Ground Term Rewriting Systems"Information and Computation. (印刷中). (2003)
OYAMAGUCHI, M.:“融合右基术语重写系统的统一问题”信息和计算(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Oyamaguchi,M.: "An E-critical Pair Completion Procedure for Nonterminating TRS's and its Application"Proc.International Workshop on Rewriting in Proof and Computation. 208-215 (2001)
Oyamaguchi,M.:“用于非终止 TRS 的电子关键对完成程序及其应用”Proc.国际证明和计算重写研讨会。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Oyamaguchi,M. and Ohta,Y.: "On the Church-Rosser Property of Left-Linear Term Rewriting Systems"IEICE Trans.Inf.& Syst.. E86-D・1. 131-135 (2003)
Oyamaguchi, M. 和 Ohta, Y.:“论左线性项重写系统的 Church-Rosser 性质” IEICE Trans.Inf.& Syst.. E86-D・1 (2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
TOYAMA, Y.: "Conditional Linearization of Non-Duplicating Term Rewriting Systems"IEICE Trans. Inf. & Syst.. E84-D・4. 439-447 (2001)
TOYAMA, Y.:“非重复项重写系统的条件线性化” IEICE Trans.. E84-D・4 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OYAMAGUCHI Michio其他文献
OYAMAGUCHI Michio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OYAMAGUCHI Michio', 18)}}的其他基金
Research in fundamental properties of rewriting systems and advanced theorem proving systems
重写系统的基本性质和高级定理证明系统的研究
- 批准号:
15500009 - 财政年份:2003
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fundamental properties of rewriting systems and completion procedures
重写系统和完成程序的基本属性
- 批准号:
08680362 - 财政年份:1996
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fundamental properties of rewriting systems and evaluation strategy of functional programs
重写系统的基本性质和功能程序的评估策略
- 批准号:
05680272 - 财政年份:1993
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Design, formal semantics and verification of parallel programming languages
并行编程语言的设计、形式语义和验证
- 批准号:
02680022 - 财政年份:1990
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)