TOPSTONE - Topological Solitons In Frustrated Magnets

TOPSTONE - 受挫磁体中的拓扑孤子

基本信息

项目摘要

The field of one- and (quasi-)two-dimensional magnetic solitons has bloomed in recent years, especially due to the enormous progress made on domain walls and skyrmions in conventional (anti-)ferromagnets. Detection of stable three-dimensional solitons (e.g., hopfions) has, however, remained elusive in collinear magnetic systems due in part to the nature of the S^{2}-order parameter, therefore representing one of the grand challenges of spintronics nowadays. In this research project we aim at establishing magnetically frustrated systems as a new platform for the creation and manipulation of these topological textures. This versatile platform brings the advantage that its order-parameter manifold is provided by the group of rotation matrices and, consequently, the nature of the magnetic solitons/defects in frustrated magnets goes beyond that of the usual S^{2} paradigm. More specifically, our goal is to unravel and exploit the topological transport properties of these versatile platforms by constructing a general framework in which explore the onset, stability and dynamics of the emergent topological solitons. We will accomplish this challenging task by means of the following program: i) we will construct realistic minimal models for frustrated magnets that host (stable) solitons, and explore the mechanisms/channels for their topological relaxation, which, in turn, determine their (finite) lifetimes. ii) We will develop hydrodynamic/phenomenological theories for the topological charge and collective (spin-like) degrees of freedom of solitons rooted in the topological constraints present in this class of materials. iii) Electrically-based approaches will be utilized to control the magnetization and topological solitons in frustrated magnets. In particular, we will show that soliton-mediated transmission of spin signals displays a greater resilience against degradation (algebraic decay) than that of the usual magnon-mediated schemes (exponential decay), which offers promising perspectives to the field of soliton-based computing.
一维和准二维磁孤子的研究近年来得到了很大的发展,特别是由于对传统(反)铁磁体中畴壁和skyrmions的研究取得了巨大的进展。稳定的三维孤子的检测(例如,然而,在共线磁系统中,由于S^{2}-序参数的性质,hopfions)仍然难以捉摸,因此代表了当今自旋电子学的重大挑战之一。在这个研究项目中,我们的目标是建立磁阻挫系统作为一个新的平台,这些拓扑纹理的创建和操作。这种通用平台带来的优点是,它的序参数流形是由旋转矩阵组提供的,因此,在受抑磁体中的磁孤子/缺陷的性质超越了通常的S^{2}范例。更具体地说,我们的目标是解开和利用这些通用平台的拓扑输运性质,通过构建一个通用的框架,探索突发拓扑孤子的发生,稳定性和动力学。我们将通过以下计划来完成这一具有挑战性的任务:i)我们将为承载(稳定)孤子的受抑磁体构建现实的最小模型,并探索其拓扑弛豫的机制/通道,这反过来又决定了它们的(有限)寿命。ii)我们将发展流体动力学/唯象理论的拓扑电荷和集体(类自旋)自由度的孤子植根于拓扑约束存在于这类材料。iii)基于电学的方法将被用来控制受抑磁体中的磁化和拓扑孤子。特别是,我们将表明,孤子介导的自旋信号传输显示出更大的弹性对退化(代数衰减)比通常的磁振子介导的计划(指数衰减),这提供了有前途的前景,以孤子为基础的计算领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Jairo Sinova, Ph.D.其他文献

Professor Dr. Jairo Sinova, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Jairo Sinova, Ph.D.', 18)}}的其他基金

CHIME — CHirality-Induced dynamics of Magnetization and Electrons
CHIME â CHirality 诱发的磁化和电子动力学
  • 批准号:
    399448442
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Theory of thermally driven spin-transport in spin-orbit coupled systems
自旋轨道耦合系统中热驱动自旋输运理论
  • 批准号:
    257819722
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

CAREER: New Frontiers in the Dynamics of Topological Solitons
职业:拓扑孤子动力学的新领域
  • 批准号:
    2235233
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Geometry and Dynamics of Topological Solitons
拓扑孤子的几何和动力学
  • 批准号:
    2650914
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Theoretical Physics - Optical topological solitons
理论物理-光学拓扑孤子
  • 批准号:
    2741286
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Analysis and applications of geometric Schrodinger equations: topological solitons and dynamics in ferromagnets
几何薛定谔方程的分析和应用:拓扑孤子和铁磁体动力学
  • 批准号:
    RGPIN-2018-03847
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Examining topological solitons and instantons in the limit of large topological charge
在大拓扑电荷极限下检查拓扑孤子和瞬时子
  • 批准号:
    568729-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Collaborative Research: From Quantum Droplets & Spinor Solitons to Vortex Knots & Topological States: Beyond the Standard Mean-Field in Atomic BECs
合作研究:来自量子液滴
  • 批准号:
    2110030
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Topological Solitons
拓扑孤子
  • 批准号:
    2620759
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Analysis and applications of geometric Schrodinger equations: topological solitons and dynamics in ferromagnets
几何薛定谔方程的分析和应用:拓扑孤子和铁磁体动力学
  • 批准号:
    RGPIN-2018-03847
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: From Quantum Droplets & Spinor Solitons to Vortex Knots & Topological States: Beyond the Standard Mean-Field in Atomic BECs
合作研究:来自量子液滴
  • 批准号:
    2110038
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Analysis and applications of geometric Schrodinger equations: topological solitons and dynamics in ferromagnets
几何薛定谔方程的分析和应用:拓扑孤子和铁磁体动力学
  • 批准号:
    RGPIN-2018-03847
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了