Research on Application of Computer Algebra to Algebraic Geometry
计算机代数在代数几何中的应用研究
基本信息
- 批准号:15540024
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The existence and the construction problem of algebraic vector bundles has attracted many algebraic geometers, in connection with the classical existence problem of subvarieties. Stimulated by Weil's dream to genralarize the automorphic forms in terms of vector bundles, Grothendieck and Atiyah initiated the theory of algebraic vector bundles. Then Narasimhan, Seshadri, Mumford et al. have deeply studied the theory and have gone to the construction of the moduli spaces and their properties. Thanks to them, the foundation of the theory of algebraic vector bundles on curves has been settled though many serious problems are still remaining to be solved. Schwarzenberger began the study on algebraic vector bundles on algebraic surface and then the head investigator of this research project found a general way to construct algebraic vector bundles on higher dimensional varieties.We have, however, no clear perspective about the existence and construction of low rank vector bundles on the projective spaces of dimension not less than four. In the present situation, it might be crucial to study the Tango bundle, which is essentially unique rank 2, indecomposable vector bundle on 5-dimensional projective space even though the ground field is of characteristic 2. In this project we set, therefore, our main target to study the Tango bundle by using Computer Algebra. We succeeded to represent the Tango bundle on Computer Algebra by a 15 x34 matrix whose entries are homogeneous quadratic forms in 6 variables. Watching this matrix we can determine the transition matrices of the Tango bundle and by using Computer Algebra we get a resolution of the Tango bundle by direct sums of line bundles. Then we can compute the Chern class of the Tango bundle. Shifting the first Chern class of the Tango bundle and computing (using Computer Algebra) the 0-th cohomology, we see that the Tango bundle is stable.
代数向量束的存在性和构造问题与经典的子变量的存在性问题联系在一起,引起了许多代数几何学者的关注。受Weil用向量束概括自同构形式的梦想的启发,Grothendieck和Atiyah开创了代数向量束理论。随后Narasimhan, Seshadri, Mumford等人对该理论进行了深入的研究,探讨了模空间的构造及其性质。他们奠定了曲线上代数向量束理论的基础,但仍有许多重大问题有待解决。施瓦岑贝格开始了对代数曲面上的代数向量束的研究,然后这个研究项目的负责人找到了在高维变量上构造代数向量束的一般方法。然而,对于不小于4维的射影空间上的低秩向量束的存在性和构造,我们还没有明确的认识。在目前的情况下,研究Tango束可能是至关重要的,因为Tango束本质上是5维射影空间上唯一的2阶不可分解向量束,尽管地面场的特征为2。因此,在这个项目中,我们将主要目标设置为使用Computer Algebra来研究Tango包。我们成功地用一个15 × 34矩阵在计算机代数上表示Tango束,该矩阵的项是6变量的齐次二次型。观察这个矩阵,我们可以确定Tango束的转移矩阵,并通过计算机代数通过直线束的直接和得到Tango束的解析。然后我们可以计算Tango包的Chern类。移动Tango包的第一个Chern类并计算(使用Computer Algebra)第0个上同调,我们看到Tango包是稳定的。
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
山田紀美子: "A sequence of blowing-ups connecting moduli of sheaves and The Donalson polynomial under change of polarization"Journal of Mathematics of Kyoto University. 43・4. (2004)
Kimiko Yamada:“极化变化下连接滑轮模量和唐纳森多项式的一系列放大”京都大学数学杂志43・4(2004年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Zur Entartung schwach verzweigter Gruppenoperationen auf Kurven
库尔文集团运营的实施
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Comelissen;Gunther;Kato;Fumiharu
- 通讯作者:Fumiharu
Non-archimedian orbifolds covered by Mumford curves
芒福德曲线覆盖的非阿基米德轨道折叠
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:S.Kato;A.Murase;T.Sugano;Takao Watanabe;Hiraku Nakajima;Manabu Ozaki;Takao Komatsu;F.Kato
- 通讯作者:F.Kato
Arithmetic structure of CMSZ fake projective plane
CMSZ假射影平面的算术结构
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:加藤 文元;落合啓之
- 通讯作者:落合啓之
On the finiteness of abelian varieties with bounded modular height
模高度有界的阿贝尔簇的有限性
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:森脇淳
- 通讯作者:森脇淳
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARUYAMA Masaki其他文献
MARUYAMA Masaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARUYAMA Masaki', 18)}}的其他基金
Study of Moduli and its Applications
模量研究及其应用
- 批准号:
10304002 - 财政年份:1998
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (A).
Algebraic and Geometric Study on the Structure of Moduli Spaces
模空间结构的代数和几何研究
- 批准号:
05452003 - 财政年份:1993
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Algebra and Geometry on Algebraic Varieties
代数簇的代数和几何
- 批准号:
04302003 - 财政年份:1992
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
相似海外基金
Vector bundle theory over the noncommutative torus
非交换圆环上的向量丛理论
- 批准号:
525719-2018 - 财政年份:2018
- 资助金额:
$ 2.3万 - 项目类别:
University Undergraduate Student Research Awards
The geometry of complex vector bundle
复向量丛的几何
- 批准号:
393494-2010 - 财政年份:2010
- 资助金额:
$ 2.3万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's














{{item.name}}会员




