Algebra and Geometry on Algebraic Varieties

代数簇的代数和几何

基本信息

  • 批准号:
    04302003
  • 负责人:
  • 金额:
    $ 12.35万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
  • 财政年份:
    1992
  • 资助国家:
    日本
  • 起止时间:
    1992 至 1994
  • 项目状态:
    已结题

项目摘要

In the last few decades the study on algebraic varieties has been very active. Not only algebraic varieties itself but also the fertility of the structures over algebraic varieties are attracting the scholars of algebra and geometry. Moreover, as we can see in the research of the conformal field theory and the Calabi-Yau manifolds, the relationship with various fields including physics is getting closer. In this project, paying attention to the interrelation among actions of groups on algebraic varieties, Hodge theory and period maps of Kahler manifolds, various moduli spaces on algebraic varieties, conformal field theory on arithmetic varieties, K-theory and number theory, we tried to make great progress in studying algebraic variety, In addition to individual studies in the neighborhoods of investigators, we organized several conferences to design close communication between related fields and sent members of the project to relevant conferences.We could get the following excellent results : construction of the moduli space of parabolic stable sheaves, study and applications of its structure, construction of the moduli space of stable sheaves on prejective schemes that may be singular, conformal field theory from the mathematical viewpoint, constructions, deformations and mirror symmetries of Calabi-Yau manifolds, development and applications of Model-Weil lattices, study and applications of K3 surfaces, existence prpblem of the surfaces of general type, development of Mori theory.
近几十年来,代数簇的研究一直十分活跃。不仅代数簇本身,而且代数簇上结构的可育性也吸引着代数和几何学者。此外,从共形场论和卡-丘流形的研究中可以看出,它与包括物理学在内的各个领域的关系越来越密切。本课题关注群在代数簇上的作用、Hodge理论与Kahler流形的周期映射、代数簇上的各种模空间、算术簇上的共形场论、K-理论与数论之间的相互关系,力求在代数簇的研究方面取得较大进展,除了研究者的个人研究外,我们组织了多次会议,设计了相关领域之间的密切交流,并派项目成员参加了相关会议,取得了以下良好的效果:抛物稳定层的模空间的构造及其结构的研究与应用,关于可能是奇异的投射方案的稳定层的模空间的构造,从数学观点的共形场论,卡-丘流形的构造、变形和镜像对称,模型-韦尔格的发展和应用,K3曲面的研究与应用,一般型曲面的存在性问题,Mori理论的发展。

项目成果

期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
掘田 良之: "D加群と代数群(現代数学シリーズ)" 約300 (1995)
堀田义行:《D模与代数群(现代数学丛书)》约300(1995年)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
川又雄二郎: "Semistable minimal inodels of threcfolds in positive or mixed charactoristic" Journal of Algebraic Geometry. 3. 463-491 (1994)
Yujiro Kawamata:“正或混合特征的三重半稳定最小 inodels”《代数几何杂志》3. 463-491 (1994)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
齋藤政彦: "Classification of non-rigid families of abelian varieties" Tohoku Math.J.45. 159-189 (1993)
Masahiko Saito:“阿贝尔变种的非刚性族的分类”Tohoku Math.J.45 (1993)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
川又 雄二郎: "Semistable minimal models of threefolds in positive or mixed characteristic" Journal of Algebraic Geometry. 3. 463-491 (1994)
Yujiro Kawamata:“正或混合特征的三重半稳定最小模型”代数几何杂志 3. 463-491 (1994)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
堀田良之: "D加群と代数群(現代数学シリーズ)" 300 (1995)
堀田义之:《D-模和代数群(现代数学丛书)》300(1995)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARUYAMA Masaki其他文献

MARUYAMA Masaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARUYAMA Masaki', 18)}}的其他基金

Research on Application of Computer Algebra to Algebraic Geometry
计算机代数在代数几何中的应用研究
  • 批准号:
    15540024
  • 财政年份:
    2003
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of Moduli and its Applications
模量研究及其应用
  • 批准号:
    10304002
  • 财政年份:
    1998
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A).
Algebraic and Geometric Study on the Structure of Moduli Spaces
模空间结构的代数和几何研究
  • 批准号:
    05452003
  • 财政年份:
    1993
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

Research on singularities on an algebraic variety
代数簇的奇点研究
  • 批准号:
    16K05089
  • 财政年份:
    2016
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Comprehensive research of Galois embedding of algebraic variety
代数簇的伽罗瓦嵌入综合研究
  • 批准号:
    15K04813
  • 财政年份:
    2015
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Resolution of singularities of an algebraic variety over an algebraically closed field in positive characteristic
正特征代数闭域上代数簇奇点的解析
  • 批准号:
    23740016
  • 财政年份:
    2011
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study of canonical divisors on higher dimensional algebraic variety
高维代数簇的正则因数研究
  • 批准号:
    22244002
  • 财政年份:
    2010
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Deformations of curves on a higher dimensional algebraic variety and their obstructions
高维代数簇上曲线的变形及其阻碍
  • 批准号:
    21740029
  • 财政年份:
    2009
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Lie algebra of differential oeprators on algebraic variety and its representations
代数簇微分算子的李代数及其表示
  • 批准号:
    09640030
  • 财政年份:
    1997
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Estimates For Integer Points on Algebraic Variety by using Diophantine Approxiwatic
使用丢番图近似估计代数簇上的整数点
  • 批准号:
    06640082
  • 财政年份:
    1994
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Resolution of Singularities of an Algebraic Variety Over a Characteristic p Field
数学科学:特征 p 域上代数簇奇异性的解析
  • 批准号:
    8901892
  • 财政年份:
    1989
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Resolution of Singularities of an Algebraic Variety over a Field of Characteristic p.
数学科学:特征域上代数簇奇异性的解析 p。
  • 批准号:
    8700957
  • 财政年份:
    1987
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Continuing Grant
Real Algebraic Variety Structures on P.L. Manifolds
P.L. 上的实代数簇结构
  • 批准号:
    7701763
  • 财政年份:
    1977
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了