Algebra and Geometry on Algebraic Varieties
代数簇的代数和几何
基本信息
- 批准号:04302003
- 负责人:
- 金额:$ 12.35万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Co-operative Research (A)
- 财政年份:1992
- 资助国家:日本
- 起止时间:1992 至 1994
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the last few decades the study on algebraic varieties has been very active. Not only algebraic varieties itself but also the fertility of the structures over algebraic varieties are attracting the scholars of algebra and geometry. Moreover, as we can see in the research of the conformal field theory and the Calabi-Yau manifolds, the relationship with various fields including physics is getting closer. In this project, paying attention to the interrelation among actions of groups on algebraic varieties, Hodge theory and period maps of Kahler manifolds, various moduli spaces on algebraic varieties, conformal field theory on arithmetic varieties, K-theory and number theory, we tried to make great progress in studying algebraic variety, In addition to individual studies in the neighborhoods of investigators, we organized several conferences to design close communication between related fields and sent members of the project to relevant conferences.We could get the following excellent results : construction of the moduli space of parabolic stable sheaves, study and applications of its structure, construction of the moduli space of stable sheaves on prejective schemes that may be singular, conformal field theory from the mathematical viewpoint, constructions, deformations and mirror symmetries of Calabi-Yau manifolds, development and applications of Model-Weil lattices, study and applications of K3 surfaces, existence prpblem of the surfaces of general type, development of Mori theory.
在过去的几十年中,关于代数品种的研究非常活跃。不仅代数品种本身,而且在代数品种上的结构的生育能力吸引了代数和几何学学者。此外,正如我们在保形场理论和卡拉比河流形的研究中所看到的那样,与包括物理在内的各种领域的关系越来越近。在这个项目中,请注意小组对代数品种的行动,霍奇理论和卡勒流形的周期地图,关于代数品种的各种模态空间,关于算术品种,k-bewor和数字理论的共同领域理论,我们试图在研究范围内取得了巨大的进展,并在研究范围内取得了巨大的进步。 communication between related fields and sent members of the project to relevant conferences.We could get the following excellent results : construction of the moduli space of parabolic stable sheaves, study and applications of its structure, construction of the moduli space of stable sheaves on prejective schemes that may be singular, conformal field theory from the mathematical viewpoint, constructions, deformations and mirror symmetries of Calabi-Yau manifolds, development and applications of模型 - 韦尔晶格,K3表面的研究和应用,一般类型表面的存在,莫里理论的发展。
项目成果
期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
齋藤政彦: "Classification of non-rigid families of abelian varieties" Tohoku Math.J.45. 159-189 (1993)
Masahiko Saito:“阿贝尔变种的非刚性族的分类”Tohoku Math.J.45 (1993)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
川又雄二郎: "Semistable minimal inodels of threcfolds in positive or mixed charactoristic" Journal of Algebraic Geometry. 3. 463-491 (1994)
Yujiro Kawamata:“正或混合特征的三重半稳定最小 inodels”《代数几何杂志》3. 463-491 (1994)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
丸山 正樹: "Instanton and parabolic sheaves" Proc.Internat.Colloquium on Geometry and Analsis,Tata Inst.of Fund.Research. (掲載予定).
Masaki Maruyama:“瞬时和抛物线滑轮”Proc.Internat.Colloquium on Geometry and Analsis,Tata Inst.of Fund.Research(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
丸山正樹: "Instantons and parabolic sheaves" Proc.In ternet.Colloqui um on Geometry and Aralysis,Tata Inst.of Fund.Researchに掲載予定.
Masaki Maruyama:“瞬时和抛物线滑轮”将发表在 Proc.Internet.Colloquium on Geometry and Araanalysis,Tata Inst.of Fund.Research 上。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARUYAMA Masaki其他文献
MARUYAMA Masaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARUYAMA Masaki', 18)}}的其他基金
Research on Application of Computer Algebra to Algebraic Geometry
计算机代数在代数几何中的应用研究
- 批准号:
15540024 - 财政年份:2003
- 资助金额:
$ 12.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Moduli and its Applications
模量研究及其应用
- 批准号:
10304002 - 财政年份:1998
- 资助金额:
$ 12.35万 - 项目类别:
Grant-in-Aid for Scientific Research (A).
Algebraic and Geometric Study on the Structure of Moduli Spaces
模空间结构的代数和几何研究
- 批准号:
05452003 - 财政年份:1993
- 资助金额:
$ 12.35万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
Characterization of multivariate sigma-functions in terms of a system of partial differential equations obtained by Gauss-Manin connection
用通过高斯-马宁连接获得的偏微分方程组表征多元 sigma 函数
- 批准号:
23K03157 - 财政年份:2023
- 资助金额:
$ 12.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on value distribution properties of meromorphic functions generated by a wide variety of series and an investigation into their possible algebraic analogues
对各种级数生成的亚纯函数的值分布特性的研究及其可能的代数类似物的研究
- 批准号:
22K03335 - 财政年份:2022
- 资助金额:
$ 12.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homotopy theory related to toric varieties and its related geomety
与环面簇相关的同伦理论及其相关几何
- 批准号:
22K03283 - 财政年份:2022
- 资助金额:
$ 12.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on singularities on an algebraic variety
代数簇的奇点研究
- 批准号:
16K05089 - 财政年份:2016
- 资助金额:
$ 12.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comprehensive research of Galois embedding of algebraic variety
代数簇的伽罗瓦嵌入综合研究
- 批准号:
15K04813 - 财政年份:2015
- 资助金额:
$ 12.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)