Research on ring theory relative to self-injective rings
与自射环相关的环理论研究
基本信息
- 批准号:15540053
- 负责人:
- 金额:$ 0.77万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Structure of quasi-Harada rings and Morita dualityWe investigated structure of quasi-Harada rings and Morita duality and obtained many results. As well as the case of Harada rings, we proved that every quasi-Harada ring is constructed from a QF ring. That is, start with a QF ring and continue to take a factor ring of a certain subring (we named such a ring a diagonally complete ring). Then we can reach any quasi-Harada ring. We also studied good self-duality, a special type of self-duality. As applications of the result about structure of quasi-Harada rings, we proved the following every locally distributive right serial ring has a good self-duality and every locally distributive right QF-2 ring has almost self duality, a generalization of self-duality. These results are partial answers of Azumaya's conjecture, which states that every exact artinian ring has a self duality. We also improved a recent result of Y. Baba about self-duality of Auslander rings of serial rings.2. Ring extensions and Morita dualityB.J.Muller proved that a ring extension R of a ring A with Morita duality also has a Morita duality if R satisfies some condition. We proved that if two rings A and B are Morita dual, then categories of certain A-rings and Brings are category equivalent and corresponding A-ring and Bring are Morita dual. This is an improvement of Muller's result. We also determined a relation between B and S in case R is a finite centralizing extension of A and is free as an A-module, where A and B are Morita dual and R and S are Morita dual. This result unifies and generalizes a theorem of Mano about self-duality of finite centralizing extensions and a theorem of Haack-Fuller about Morita duality of semi-group rings.
1.拟Harada环的结构和Morita对偶我们研究了拟Harada环和Morita对偶的结构,得到了许多结果。与Harada环的情形一样,我们证明了每个拟Harada环都是由QF环构成的。也就是说,从QF环开始,继续取某个子环的因子环(我们称这样的环为对角完备环)。然后我们可以到达任何准原田环。我们还研究了良好的自我二元性,这是一种特殊的自我二元性。作为对拟Harada环结构的应用,我们证明了:每个局部分配右序列环具有良好的自对偶;每个局部分配右QF-2环几乎具有自对偶,这是自对偶的推广。这些结果部分回答了Azumaya的猜想,该猜想指出每个精确的Artin环都有自对偶。我们还改进了Y.Baba最近关于串联环的Auslander环的自对偶性的一个结果。环扩张与Morita对偶B.J.Muller证明了具有Morita对偶的环A的环扩张R也有Morita对偶,如果R满足一定条件。我们证明了:如果两个环A和B是Morita对偶,则某些A-环和带来的范畴是范畴等价的,相应的A-环和带来是Morita对偶。这是对穆勒结果的改进。当R是A的有限集中扩张且作为A-模自由时,我们还确定了B和S之间的关系,其中A和B是Morita对偶,R和S是Morita对偶。这一结果统一和推广了Mano关于有限集中扩张的自对偶的一个定理和Haack-Fuller关于半群环的Morita对偶的一个定理。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self-duality of quasi-Harada rings and locally distributive rings
准原田环和局部分布环的自对偶性
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Kiyoichi Oshiro;(with Chaehoon Chang);Kazutosi Koike
- 通讯作者:Kazutosi Koike
Morita duality and ring extensions
森田对偶性和环扩展
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:菊政 勲;吉村 弘;馬場良始;Mamoru Kutami;Mamoru Kutami;Kazutosi Koike
- 通讯作者:Kazutosi Koike
Kazutoshi Koike: "Self-duality of quasi-Harada rings and locally distributive rings"Proceedings of the 36th Symposium on Ring Theory and Representation Theory. (印刷中).
Kazutoshi Koike:“准原田环和局部分布环的自对偶性”第 36 届环理论和表示理论研讨会论文集(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOIKE Kazutoshi其他文献
KOIKE Kazutoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOIKE Kazutoshi', 18)}}的其他基金
Study of artinian rings with Morita duality
森田对偶性阿尔丁环的研究
- 批准号:
23540064 - 财政年份:2011
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)