Totally complex submanifolds of a quaternion projective space
四元数射影空间的全复子流形
基本信息
- 批准号:15540065
- 负责人:
- 金额:$ 1.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research, we investigate totally complex submanifolds of a quaternion projective space (more generally a quaternionic Kahler manifold). It is one aspect of the interplay of quaternionic differential geometry and complex differential geometry and makes so-called "quaternionic complex differential geometry". A submanifold M of a quaternionic Kahler manifold (M^^~, Q, g^^~) is said to be totally complex if there exists a section I^^~ of the bundle Q|_M such that (1)I^^~^2 = -id, (2)I^^~TM = TM (3)KTM ⊥ TM for any K ∈ Q|_M with <I^^~, K> = 0. Typical examples are half dimensional totally complex submanifolds of a quaternion projective space HP^n with parallel second fundamental form, which have been classified by Tsukada(head investigator of this research). The twistor space Z of (M^^~,Q,g^^~) is defined by Z = {I^^~ ∈ Q|I^^~^2 =-id}, which is an S^2-bundle over M^^~. The twistor space Z has a natural complex structure and it admits an Einstein-Kahler metric if M^^~ has positive scalar curvature.Main results of this research are the following :1.We show fundamental theorem on the existence and the uniqueness for half dimensional totally complex submanifolds of HP^n or the quaternion hyperbolic space HH^n. This result is an affirmative answer to the conjecture by Alekseevsky and Marchiafava.2.For a totally complex submanifold M of M^^~, we consider a new natural lift to the twistor space Z of M^^~ and construct a totally real and minimal submanifold of Z.3.We characterize half dimensional totally complex submanifolds of HP^n with parallel second fundamental form under some curvature condition such as Einstein-Kahler.4.We investigate fundamental properties of isotropic Kahler submanifolds of a complex quadric, whose theory is analogous to that of totally complex submanifolds.
在这项研究中,我们研究全复的四元数射影空间(更一般的四元数Kahler流形)的子流形。它是四元数微分几何和复微分几何相互作用的一个方面,并使所谓的“四元数复微分几何”。四元数Kahler流形(M^^~,Q,g^^~)的子流形M称为全复的,如果存在丛Q的截面I^^~|_M使得(1)I^^~^2 = -id,(2)I^^~TM = TM(3)KTM ≠ TM,对任意K ∈ Q|其中,K> = 0。典型的例子是具有平行第二基本形式的四元数射影空间HP^n的半维全复子流形,它们已经被Tsukada(本研究的首席研究员)分类。(M^^~,Q,g^^~)的扭量空间Z定义为Z = {I^^~ ∈ Q| I^^~^2 =-id},它是M^^~上的S^2-丛。扭量空间Z具有自然的复结构,如果M^^~具有正的数量曲率,则Z具有Einstein-Kahler度量.本文的主要结果如下:1.给出了HP^n或四元数双曲空间HH^n的半维全复子流形的存在唯一性的基本定理.这一结果是对Alekseevsky和Marchiafava猜想的肯定回答。2.对于M^^~的全复子流形M,考虑M^^~的扭量空间Z的一个新的自然提升,构造了Z的一个全真实的极小子流形。3.在某些曲率条件下,如Einstein-4.研究了复二次曲面的迷向Kahler子流形的基本性质,其理论与全复子流形的理论类似。
项目成果
期刊论文数量(52)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Einstein-Kahler submanifolds in a quaternion projective space
四元数射影空间中的爱因斯坦-卡勒子流形
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Honda;K.Tsukada;N.Aoki;H.Murakami;K.Tsukada;N.Aoki;H.Shiga;K.Tsukada
- 通讯作者:K.Tsukada
Symmetric submanifolds associated with irreducible symmetric R-spaces
- DOI:10.1007/s00208-005-0646-2
- 发表时间:2005-04
- 期刊:
- 影响因子:1.4
- 作者:J. Berndt;J. Eschenburg;H. Naitoh;K. Tsukada
- 通讯作者:J. Berndt;J. Eschenburg;H. Naitoh;K. Tsukada
K.Honda, K.Tsukada: "Conformably flat semi-Riemamian manifolds with nilpotent Ricci operators and affine differential geometry"Annals of Global Analysis and Geometry. (出版予定)(未定).
K.Honda、K.Tsukada:“具有幂零 Ricci 算子和仿射微分几何的一致平坦半黎马曼流形”《全局分析与几何年鉴》(待出版)(TBD)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Another natural lift of a Kahler sub manifold of quater nionic Kahler manifold to the twistor space
四元离子卡勒流形的卡勒子流形到扭量空间的另一种自然提升
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:N.Ejiri;K.Tsukada
- 通讯作者:K.Tsukada
K.Tsukada: "Einstein Kahler submanifolds on a quaternion projective space"Bull of London Math.Soc.. (出版予定)(未定).
K. Tsukada:“四元数射影空间上的爱因斯坦卡勒子流形”Bull of London Math.Soc..(待出版)(TBD)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TSUKADA Kazumi其他文献
TSUKADA Kazumi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TSUKADA Kazumi', 18)}}的其他基金
The symmetry and the homogeneity in pseudo-Riemannian geometry
伪黎曼几何中的对称性和齐次性
- 批准号:
20540067 - 财政年份:2008
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Singer invariant of homogeneous spaces
齐次空间的辛格不变量
- 批准号:
13640066 - 财政年份:2001
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




