The synthetic research for the basic iterative method for the non-diagonal dominant matrix.
非对角占优矩阵基本迭代方法的综合研究。
基本信息
- 批准号:15540144
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1)Development of the new preconditioning matrixWe developed the new preconditioning matrix. Using the new preconditioning matrix can be accelerate of convergence of the classical Gauss-Seidel method. Moreover, it is possible to solve a non-diagonal dominant matrix which is impossible to apply the iterative method. On the other hand, Kohno developed other type's preconditioning matrix and obtained many effective results. The proposed method is excellent in iterative numbers and CPU time as compared with the ICCG method.(2)Development of criterion of the H-matrix.The H-matrix is very important for the solution of linear systems of algebraic equations by the iterative methods. But there is not criterion for the H-matrix. We developed the iterative criterion as new criterion. This method is our completely original. However, many iteration numbers are needed in judge to all H-matrix. In order to conquer this fault, we discovered new iterative criterion(3)We give new error bounds for the linear complementarity problem where the involved matrix is a P-matrix. Computation of rigorous error bounds can be turned into P-matrix linear interval system. Moreover, for the involved matrix being an H-matrix with positive diagonals, an error bound can be found by solving a linear system of equations which is sharper than the Mathias-Pang error bound.
(1)新的预处理矩阵的开发我们开发了新的预处理矩阵。使用新的预处理矩阵可以加速经典Gauss-Seidel方法的收敛。此外,还可以求解无法应用迭代方法的非对角主导矩阵。另一方面,Kohno开发了其他类型的预处理矩阵并取得了许多有效的结果。与ICCG方法相比,该方法在迭代次数和CPU时间上都有优势。(2)H矩阵判据的开发。H矩阵对于用迭代方法求解线性代数方程组非常重要。但H矩阵没有标准。我们开发了迭代准则作为新准则。这个方法是我们完全原创的。然而,对所有H矩阵的判断需要很多迭代次数。为了克服这个错误,我们发现了新的迭代准则(3)我们为所涉及的矩阵是P矩阵的线性互补问题给出了新的误差界限。严格误差界的计算可以转化为P矩阵线性区间系统。此外,对于所涉及的矩阵是具有正对角线的H矩阵,可以通过求解比Mathias-Pang误差界更尖锐的线性方程组来找到误差界。
项目成果
期刊论文数量(36)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Variable Preconditioning with the SOR Method for the GCR-like Methods
类 GCR 方法的 SOR 变量预处理
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:K.Abe;S.Zhnag
- 通讯作者:S.Zhnag
M.Sakakihara et al.: "The Gauss-Seidel Iterative method with the preconditioning matrix (I+S+Sm)"Japan J.Industrial and Appl.Mathematics. 21・1. 25-34 (2004)
M.Sakakihara 等:“使用预处理矩阵 (I+S+Sm) 的高斯-赛德尔迭代法”Japan J.Induscial and Appl.Mathematics 21・1 (2004)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
On the adaptive preconditioned iterative method.
关于自适应预条件迭代方法。
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:K.Abe;S.Zhnag;X.Chen;T.Kohno
- 通讯作者:T.Kohno
H.Niki et al.: "An attempt at numerical calculation of natural convection using preconditioned iterative methods"Numerical Heat Transfer, Part A. 44. 97-103 (2003)
H.Niki 等人:“使用预处理迭代方法对自然对流进行数值计算的尝试”Numerical Heat Transfer,A 部分. 44. 97-103 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NIKI Hiroshi其他文献
NIKI Hiroshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NIKI Hiroshi', 18)}}的其他基金
A Study of the Formation of Samurai Stations in the Late Middle Ages and Early Modern Times
中世纪晚期和近代早期武士驻地的形成研究
- 批准号:
19H01312 - 财政年份:2019
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigation in the central area (Hon-maru) of Osaka Castle at the Toyotomi period by sub-surface prospecting
丰臣时代大阪城中心地区(本丸)的地下勘探调查
- 批准号:
15K12936 - 财政年份:2015
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
General research which aims at the hybrid iteration method for a matrix equation including a non-diagonal dominant matrix
针对含非对角主矩阵的矩阵方程的混合迭代方法的一般性研究
- 批准号:
21540156 - 财政年份:2009
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The theoretical and practical examination about citywalls The reconstruction of images about castle towns in early modern and the practical use to town plannings
城墙的理论与实践检验近代初期城下町形象的重建及其在城镇规划中的实际运用
- 批准号:
21652061 - 财政年份:2009
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
The fundamental research of YAMANOTERA(Religion cities on the mountains) in Japanese medieval times
日本中世纪山之寺的基础研究
- 批准号:
20320105 - 财政年份:2008
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A synthetic research for the historical environment restoration of 京郊 (the suburbs of KYOTO) medieval village - Around OYABU 大藪 - mura in Yamashiro country 乙訓 - gun (Kyoto City Minami-ku)
京都(京都近郊)中世纪村庄的历史环境恢复综合研究 - 山城国大国郡大野村周边(京都市南区)
- 批准号:
13410101 - 财政年份:2001
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Parallelization of Iterative Method
迭代法的并行化
- 批准号:
09640305 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Enhancement of H-matrix library and optimization for next generation supercomputers
H矩阵库的增强和下一代超级计算机的优化
- 批准号:
17H01749 - 财政年份:2017
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
H²-matrix preconditioners for integral and elliptic partial differential equations
积分和椭圆偏微分方程的 H² 矩阵预条件子
- 批准号:
229645647 - 财政年份:2012
- 资助金额:
$ 2.3万 - 项目类别:
Research Grants














{{item.name}}会员




