H²-matrix preconditioners for integral and elliptic partial differential equations
积分和椭圆偏微分方程的 H² 矩阵预条件子
基本信息
- 批准号:229645647
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2012
- 资助国家:德国
- 起止时间:2011-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The recently developed H-matrix method can be used to construct efficient solvers for elliptic partial differential equations and integral equations. This approach is particularly robust when considering differential equations with discontinuous or anisotropic coefficients, e.g., appearing in simulations of composite materials. An H-matrix usually requires O(n k log n) units of storage, where n is the matrix dimension and k depends on the condition number of the linear system and the desired accuracy of the approximation.H²-matrices combine the H-matrix technique with multilevel structures in order to reduce the storage requirements to O(n k) and handle significantly larger linear systems. Numerical experiments show that H²-matrices indeed require less storage than their H-matrix counterparts, but the setup time of currently existing algorithms compares unfavorably to those for H-matrices.This research project focuses on developing a new, more efficient method for the construction of H²-matrix solvers. The approach is based on a new algorithm that performs local low-rank updates for H²-matrices in linear, i.e., optimal, complexity. This flexible new algorithm can be used to construct preconditioners for differential and integral equations more efficiently and it is also expected to pave the way for the development of efficient techniques for other arithmetic operations in the set of H²-matrices.
最近发展起来的H-矩阵方法可以用来构造椭圆型偏微分方程和积分方程的有效求解器。当考虑具有不连续或各向异性系数的微分方程时,这种方法特别鲁棒,例如,出现在复合材料的模拟中。一个H矩阵通常需要O(nk log n)的存储单元,其中n是矩阵维数,k取决于线性系统的条件数和所需的近似精度。H²矩阵联合收割机将H矩阵技术与多级结构相结合,以便将存储需求减少到O(nk),并处理更大的线性系统。数值实验表明,H²-矩阵确实比H-矩阵需要更少的存储空间,但现有的算法的建立时间不如H-矩阵。本研究旨在开发一种新的、更有效的H²-矩阵求解器的构造方法。该方法基于一种新的算法,该算法对线性H²矩阵进行局部低秩更新,即,最优的复杂性这种灵活的新算法可用于更有效地构造微分和积分方程的预条件子,也有望为H²-矩阵集合上其他算术运算的高效技术的发展铺平道路。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient arithmetic operations for rank-structured matrices based on hierarchical low-rank updates
基于分层低秩更新的秩结构矩阵的高效算术运算
- DOI:10.1007/s00791-015-0233-3
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:S. Börm;K. Reimer
- 通讯作者:K. Reimer
Computing the eigenvalues of symmetric $${\fancyscript{H}}^2$$H2-matrices by slicing the spectrum
通过对频谱进行切片来计算对称 $${fancyscript{H}}^2$$H2 矩阵的特征值
- DOI:10.1007/s00791-015-0238-y
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:P. Benner;S. Börm;T. Mach;K. Reimer
- 通讯作者:K. Reimer
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Steffen Börm其他文献
Professor Dr. Steffen Börm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Steffen Börm', 18)}}的其他基金
Separation der Fundamentallösungen elliptischer Differentialgleichungen mit Hilfe von Quadraturverfahren
使用求积法分离椭圆微分方程的基本解
- 批准号:
161539750 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Compression method for boundary integral matrices with translation-invariant kernel functions
具有平移不变核函数的边界积分矩阵的压缩方法
- 批准号:
455431879 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
OAC Core: The Best of Both Worlds: Deep Neural Operators as Preconditioners for Physics-Based Forward and Inverse Problems
OAC 核心:两全其美:深度神经算子作为基于物理的正向和逆向问题的预处理器
- 批准号:
2313033 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Spectral Preconditioners for High Frequency Wave Propagation Problems
用于高频波传播问题的频谱预处理器
- 批准号:
2595936 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Research on Preconditioners for Ill-Conditioned Linear Systems
病态线性系统预调节器的研究
- 批准号:
19K20281 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effective preconditioners for linear systems in fractional diffusion
分数扩散线性系统的有效预处理器
- 批准号:
EP/R009821/1 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grant
Effective Preconditioners for High Frequency Wave Equations
高频波动方程的有效预调节器
- 批准号:
1521830 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
Multiple preconditioners for saddle-point and other problems
针对鞍点和其他问题的多个预处理器
- 批准号:
1418882 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Continuing Grant
A study on consistent preconditioners for iterative solutions of large-scale linear systems
大规模线性系统迭代求解的一致预处理器研究
- 批准号:
25390145 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Preconditioners for Large-Scale Atomistic Simulations
用于大规模原子模拟的预处理器
- 批准号:
EP/J022055/1 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grant
Preconditioners for Large-Scale Atomistic Simulations
用于大规模原子模拟的预处理器
- 批准号:
EP/J022012/1 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grant
Preconditioners for Large-Scale Atomistic Simulations
用于大规模原子模拟的预处理器
- 批准号:
EP/J021377/1 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grant














{{item.name}}会员




