RESEARCH ON STRUCTURE THEORY OF BANACH SPACES AND NORM INEQUALITIES WITH APPLICATIONS

Banach空间结构理论及范数不等式研究及其应用

基本信息

  • 批准号:
    15540179
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

In this research we considered some generalizations and refinements of classical norm inequalities and geometric constants, and investigated geometric properties of Banach spaces X in connection with those inequalities and constants. In particular, we considered refined generalizations of Hanner inequality and Schaffer constant, and characterized geometric properties of X in terms of these inequalities and constants. We also investigated geometric properties of ψ-direct sums of Banach spaces.The main results are stated as follows :1. Norm inequalities and geometry of Banach spacesWe consider some refined generalizations of Hanner's inequality for Banach spaces X, and characterize geometric properties of X such as uniform non-squareness, p-uniform smoothness and quniform convexity in terms of these inequalities. We also consider extensions of strong random Clarkson inequalities, and characterize Banach spaces of strong type p in terms of those inequalities.2. Refined generalizations of Schaffer constant and geometry of Banach spacesWe introduce new geometric constants (or functions) φx(τ) for Banach spaces X as refined generalizations of the Schaffer constant S(X), and investigate some geometric properties of X in terms of these constants (or functions). In particular, the normal structure coefficients N(X) of X can be estimated by φx(τ). Some examples of concrete Banach spaces X with the calculation of φx(τ) are also given.3. Geometric properties of ψ-direct sums of Banach spacesWe consider the ψ-direct sum (X_1 【symmetry】 X_2 【symmetry】 【triple bond】 【symmetry】 X_n)_ψ of Banach spaces X_1, X_2, 【triple bond】, X_n, and investigate geometric properties such as uniform non-squareness, uniform convexity, uniform non-l^n_1-ness (B_n-convexity) and fixed point properties. These properties of such spaces can be described in terms of the function ψ and Banach spaces X_1,X_2,【triple bond】, X_n.
本文考虑了经典范数不等式和几何常数的一些推广和改进,并研究了与这些不等式和几何常数相关的Banach空间X的几何性质。特别地,我们考虑了Hanner不等式和Schaffer常数的精细推广,并根据这些不等式和常数表征了X的几何性质。我们还研究了Banach空间的ψ-直和的几何性质。主要研究结果如下:1。本文考虑了Banach空间X上Hanner不等式的一些改进推广,并利用这些不等式刻画了X的一致非平方性、p一致光滑性和q一致凸性等几何性质。我们还考虑了强随机克拉克森不等式的扩展,并用这些不等式刻画了强p型的Banach空间。在Banach空间X中引入新的几何常数φx(τ)作为Schaffer常数S(X)的精细推广,并利用这些常数(或函数)研究了X的一些几何性质。特别地,X的正态结构系数N(X)可以用φx(τ)来估计。给出了φx(τ)计算的具体巴拿赫空间X的一些例子。考虑Banach空间X_1、X_2、【三键】、X_n的ψ-直和(X_1【对称】X_2【对称】【三键】【对称】X_n)_ψ的几何性质,研究一致非平方性、一致凸性、一致非l^n_1 (b_n -凸性)和不动点性质。这些空间的性质可以用函数ψ和巴拿赫空间X_1,X_2,【三键】,X_n来描述。

项目成果

期刊论文数量(105)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extension of random and strong random Clarkson inequalities in Banach spaces
Banach 空间中随机和强随机克拉克森不等式的推广
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    高橋泰嗣;高橋泰嗣;Tomonari Suzuki;Yasuji Takahashi;Yasuji Takahashi;Tomonari Suzuki;Yasutaka Yamada;加藤幹雄;Jyunji Inoue;Lasha Ephremidze;Hiroyuki Takagi;Hiroyuki Takagi;山田康隆;高木康啓行;Sin-Ei Takahasi;山田康隆;田村高幸;田村高幸;高橋泰嗣;Takeshi Miura;Yasutaka Yamada
  • 通讯作者:
    Yasutaka Yamada
Vector valued ergodic theorems for multiparameter additive processes II
多参数加性过程的向量值遍历定理 II
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Aoki;T.Kawai;T.Koike;Y.Takei;S.Kamiya;Tatsuhiro Honda;Makoto Sakai;Ryotaro Sato
  • 通讯作者:
    Ryotaro Sato
Strong random Clarkson inequality and its extension
强随机克拉克森不等式及其推广
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    高橋泰嗣;高橋泰嗣;Tomonari Suzuki;Yasuji Takahashi;Yasuji Takahashi;Tomonari Suzuki;Yasutaka Yamada;加藤幹雄;Jyunji Inoue;Lasha Ephremidze;Hiroyuki Takagi;Hiroyuki Takagi;山田康隆;高木康啓行;Sin-Ei Takahasi;山田康隆;田村高幸;田村高幸;高橋泰嗣;Takeshi Miura;Yasutaka Yamada;Makoto Tsukada;Yasutaka Yamada;Hiroyuki Takagi;Yasutaka Yamada;Takayuki Tamura;Takayuki Tamura;Yasuji Takahashi;Takeshi Miura;Makoto Tsukada;山田康隆;Takeshi Miura;山田康隆;山田康隆;高橋泰嗣;Yasutaka Yamada;山田康隆
  • 通讯作者:
    山田康隆
Hyers-Ulam stability constants of first order linear differential operators
一阶线性微分算子的 Hyers-Ulam 稳定性常数
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    高橋泰嗣;高橋泰嗣;Tomonari Suzuki;Yasuji Takahashi;Yasuji Takahashi;Tomonari Suzuki;Yasutaka Yamada;加藤幹雄;Jyunji Inoue;Lasha Ephremidze;Hiroyuki Takagi;Hiroyuki Takagi;山田康隆;高木康啓行;Sin-Ei Takahasi;山田康隆;田村高幸;田村高幸;高橋泰嗣;Takeshi Miura;Yasutaka Yamada;Makoto Tsukada;Yasutaka Yamada;Hiroyuki Takagi;Yasutaka Yamada;Takayuki Tamura;Takayuki Tamura;Yasuji Takahashi;Takeshi Miura;Makoto Tsukada;山田康隆;Takeshi Miura;山田康隆;山田康隆;高橋泰嗣;Yasutaka Yamada;山田康隆;高橋泰嗣;Ryotaro Sato;Sin-Ei Takahasi
  • 通讯作者:
    Sin-Ei Takahasi
Solvability of the functional equation f=(T-I)h for vector-valued functions
向量值函数的函数方程 f=(T-I)h 的可解性
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    高橋泰嗣;高橋泰嗣;Tomonari Suzuki;Yasuji Takahashi;Yasuji Takahashi;Tomonari Suzuki;Yasutaka Yamada;加藤幹雄;Jyunji Inoue;Lasha Ephremidze;Hiroyuki Takagi;Hiroyuki Takagi;山田康隆;高木康啓行;Sin-Ei Takahasi;山田康隆;田村高幸;田村高幸;高橋泰嗣;Takeshi Miura;Yasutaka Yamada;Makoto Tsukada;Yasutaka Yamada;Hiroyuki Takagi;Yasutaka Yamada;Takayuki Tamura;Takayuki Tamura;Yasuji Takahashi;Takeshi Miura;Makoto Tsukada;山田康隆;Takeshi Miura;山田康隆;山田康隆;高橋泰嗣;Yasutaka Yamada;山田康隆;高橋泰嗣;Ryotaro Sato;Sin-Ei Takahasi;Mikio Kato;Yasuji Takahashi;Yasutaka Yamada;Yasuji Takahashi;Yasutaka Yamada;Sin-Ei Takahashi;Ryotaro Sato
  • 通讯作者:
    Ryotaro Sato
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKAHASHI Yasuji其他文献

TAKAHASHI Yasuji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKAHASHI Yasuji', 18)}}的其他基金

Research on geometric constants and norm inequalities in Banach spaces and their applications
Banach空间中几何常数和范数不等式的研究及其应用
  • 批准号:
    19540196
  • 财政年份:
    2007
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RESEARCH ON NORM INEQUALITIES IN BANACH SPACES AND ITS APPLICATIONS
Banach空间中的范数不等式及其应用研究
  • 批准号:
    13640188
  • 财政年份:
    2001
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RESEARCH ON STRUCTURAL THEORY OF BANACH SPACES AND ITS APPLICATIONS
Banach空间结构理论及其应用研究
  • 批准号:
    11640177
  • 财政年份:
    1999
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on Geometry and Probability in Banach Spaces and its Applications
Banach空间中的几何与概率研究及其应用
  • 批准号:
    09640214
  • 财政年份:
    1997
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了