RESEARCH ON STRUCTURE THEORY OF BANACH SPACES AND NORM INEQUALITIES WITH APPLICATIONS
Banach空间结构理论及范数不等式研究及其应用
基本信息
- 批准号:15540179
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research we considered some generalizations and refinements of classical norm inequalities and geometric constants, and investigated geometric properties of Banach spaces X in connection with those inequalities and constants. In particular, we considered refined generalizations of Hanner inequality and Schaffer constant, and characterized geometric properties of X in terms of these inequalities and constants. We also investigated geometric properties of ψ-direct sums of Banach spaces.The main results are stated as follows :1. Norm inequalities and geometry of Banach spacesWe consider some refined generalizations of Hanner's inequality for Banach spaces X, and characterize geometric properties of X such as uniform non-squareness, p-uniform smoothness and quniform convexity in terms of these inequalities. We also consider extensions of strong random Clarkson inequalities, and characterize Banach spaces of strong type p in terms of those inequalities.2. Refined generalizations of Schaffer constant and geometry of Banach spacesWe introduce new geometric constants (or functions) φx(τ) for Banach spaces X as refined generalizations of the Schaffer constant S(X), and investigate some geometric properties of X in terms of these constants (or functions). In particular, the normal structure coefficients N(X) of X can be estimated by φx(τ). Some examples of concrete Banach spaces X with the calculation of φx(τ) are also given.3. Geometric properties of ψ-direct sums of Banach spacesWe consider the ψ-direct sum (X_1 【symmetry】 X_2 【symmetry】 【triple bond】 【symmetry】 X_n)_ψ of Banach spaces X_1, X_2, 【triple bond】, X_n, and investigate geometric properties such as uniform non-squareness, uniform convexity, uniform non-l^n_1-ness (B_n-convexity) and fixed point properties. These properties of such spaces can be described in terms of the function ψ and Banach spaces X_1,X_2,【triple bond】, X_n.
本文考虑了经典的范数不等式和几何常数的推广和加细,并结合这些不等式和几何常数研究了Banach空间X的几何性质。特别地,我们考虑了Hanner不等式和Schaffer常数的精化推广,并利用这些不等式和常数刻画了X的几何性质。我们还研究了Banach空间的n-直和的几何性质,主要结果如下:1。Banach空间的范数不等式与几何考虑了Banach空间X上Hanner不等式的一些精化推广,并利用这些不等式刻画了X的一致非平方性、p-一致光滑性和q-一致凸性等几何性质。我们还考虑了强随机克拉克森不等式的推广,并利用这些不等式刻画了强p型Banach空间. Schaffer常数的精化推广与Banach空间的几何我们在Banach空间X中引入了新的几何常数(或函数)φx(τ)作为Schaffer常数S(X)的精化推广,并利用这些常数(或函数)研究了X的一些几何性质.特别地,X的正规结构系数N(X)可以通过φx(τ)来估计。给出了具体Banach空间X中φx(τ)的计算实例. Banach空间的ψ-直和的几何性质我们考虑Banach空间X_1、X_2、[三键]、X_n的ψ-直和(X_1 [对称性] X_2 [对称性] [三键] [对称性] X_n)_ψ,并研究了一致非方形性、一致凸性、一致非l ^n_1性(B_n-凸性)和不动点性质等几何性质。这类空间的这些性质可以用函数λ和Banach空间X_1,X_2,[三键],X_n来描述。
项目成果
期刊论文数量(105)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extension of random and strong random Clarkson inequalities in Banach spaces
Banach 空间中随机和强随机克拉克森不等式的推广
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:高橋泰嗣;高橋泰嗣;Tomonari Suzuki;Yasuji Takahashi;Yasuji Takahashi;Tomonari Suzuki;Yasutaka Yamada;加藤幹雄;Jyunji Inoue;Lasha Ephremidze;Hiroyuki Takagi;Hiroyuki Takagi;山田康隆;高木康啓行;Sin-Ei Takahasi;山田康隆;田村高幸;田村高幸;高橋泰嗣;Takeshi Miura;Yasutaka Yamada
- 通讯作者:Yasutaka Yamada
Vector valued ergodic theorems for multiparameter additive processes II
多参数加性过程的向量值遍历定理 II
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:T.Aoki;T.Kawai;T.Koike;Y.Takei;S.Kamiya;Tatsuhiro Honda;Makoto Sakai;Ryotaro Sato
- 通讯作者:Ryotaro Sato
Strong random Clarkson inequality and its extension
强随机克拉克森不等式及其推广
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:高橋泰嗣;高橋泰嗣;Tomonari Suzuki;Yasuji Takahashi;Yasuji Takahashi;Tomonari Suzuki;Yasutaka Yamada;加藤幹雄;Jyunji Inoue;Lasha Ephremidze;Hiroyuki Takagi;Hiroyuki Takagi;山田康隆;高木康啓行;Sin-Ei Takahasi;山田康隆;田村高幸;田村高幸;高橋泰嗣;Takeshi Miura;Yasutaka Yamada;Makoto Tsukada;Yasutaka Yamada;Hiroyuki Takagi;Yasutaka Yamada;Takayuki Tamura;Takayuki Tamura;Yasuji Takahashi;Takeshi Miura;Makoto Tsukada;山田康隆;Takeshi Miura;山田康隆;山田康隆;高橋泰嗣;Yasutaka Yamada;山田康隆
- 通讯作者:山田康隆
Hyers-Ulam stability constants of first order linear differential operators
一阶线性微分算子的 Hyers-Ulam 稳定性常数
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:高橋泰嗣;高橋泰嗣;Tomonari Suzuki;Yasuji Takahashi;Yasuji Takahashi;Tomonari Suzuki;Yasutaka Yamada;加藤幹雄;Jyunji Inoue;Lasha Ephremidze;Hiroyuki Takagi;Hiroyuki Takagi;山田康隆;高木康啓行;Sin-Ei Takahasi;山田康隆;田村高幸;田村高幸;高橋泰嗣;Takeshi Miura;Yasutaka Yamada;Makoto Tsukada;Yasutaka Yamada;Hiroyuki Takagi;Yasutaka Yamada;Takayuki Tamura;Takayuki Tamura;Yasuji Takahashi;Takeshi Miura;Makoto Tsukada;山田康隆;Takeshi Miura;山田康隆;山田康隆;高橋泰嗣;Yasutaka Yamada;山田康隆;高橋泰嗣;Ryotaro Sato;Sin-Ei Takahasi
- 通讯作者:Sin-Ei Takahasi
Solvability of the functional equation f=(T-I)h for vector-valued functions
向量值函数的函数方程 f=(T-I)h 的可解性
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:高橋泰嗣;高橋泰嗣;Tomonari Suzuki;Yasuji Takahashi;Yasuji Takahashi;Tomonari Suzuki;Yasutaka Yamada;加藤幹雄;Jyunji Inoue;Lasha Ephremidze;Hiroyuki Takagi;Hiroyuki Takagi;山田康隆;高木康啓行;Sin-Ei Takahasi;山田康隆;田村高幸;田村高幸;高橋泰嗣;Takeshi Miura;Yasutaka Yamada;Makoto Tsukada;Yasutaka Yamada;Hiroyuki Takagi;Yasutaka Yamada;Takayuki Tamura;Takayuki Tamura;Yasuji Takahashi;Takeshi Miura;Makoto Tsukada;山田康隆;Takeshi Miura;山田康隆;山田康隆;高橋泰嗣;Yasutaka Yamada;山田康隆;高橋泰嗣;Ryotaro Sato;Sin-Ei Takahasi;Mikio Kato;Yasuji Takahashi;Yasutaka Yamada;Yasuji Takahashi;Yasutaka Yamada;Sin-Ei Takahashi;Ryotaro Sato
- 通讯作者:Ryotaro Sato
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKAHASHI Yasuji其他文献
TAKAHASHI Yasuji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKAHASHI Yasuji', 18)}}的其他基金
Research on geometric constants and norm inequalities in Banach spaces and their applications
Banach空间中几何常数和范数不等式的研究及其应用
- 批准号:
19540196 - 财政年份:2007
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RESEARCH ON NORM INEQUALITIES IN BANACH SPACES AND ITS APPLICATIONS
Banach空间中的范数不等式及其应用研究
- 批准号:
13640188 - 财政年份:2001
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RESEARCH ON STRUCTURAL THEORY OF BANACH SPACES AND ITS APPLICATIONS
Banach空间结构理论及其应用研究
- 批准号:
11640177 - 财政年份:1999
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on Geometry and Probability in Banach Spaces and its Applications
Banach空间中的几何与概率研究及其应用
- 批准号:
09640214 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




