Asymptotic analytical study of differential equations

微分方程的渐近分析研究

基本信息

  • 批准号:
    15540186
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

A. Asymptotic analysis of differential equations in complex domain.Uchiyama showed that formal solutions to a certain nonlinear PDE with regular singularity converge by the method of majorant series. Ouchi showed Borel summability of formal solutions to a certain semilinear 1^<st> order singular PDE and its application to normal form of vector fields and multi-summability of formal solution to a certain PDE regarded as perturbation of ODE. Tahara obtained the structure of singularities of solutions to Fuchsian nonlinear PDE, necessary or sufficient conditions for existence of singular solutions to 1St order PDE's of normal type and (non)existence of singularities and uniqueness of solutions to nonlinear PDE of totally characteristic type.B. Asymptotic analysis of differential equations in real domain and related analysis.Uchiyama showed local uniquness of radial solutions to 2^<nd> order one dimensional p-elliptic equations and obtained with L.Paredes a candidate of nonlinear PDEs with regular singularity from one dimensinal model of 4^<th> order p-elliptic equations. Yoshino, with M. Suwa, characterized distribution of exponential type with applications and obtained results on positive definite distribution. Hirata gave a concrete representation of a family of solutions through elliptic functions to 3^<rd> order nonlinear PDE. Goto did reserch on asymptotic inclusion. Aoyagi gave asymptotic expasion of the stochastic comlexity of non-analytic learning machines.
A.内山用优级数方法证明了一类具有正则奇性的非线性偏微分方程的形式解的收敛性。Ouchi证明了一类半线性1阶奇异偏微分方程形式解的Borel可和<st>性及其在向量场规范形上的应用,以及一类常微分方程形式解的多重可和性. Tahara得到了Fuchsian非线性偏微分方程解的奇异性结构,一阶正规型偏微分方程奇异解存在的充要条件,以及全特征型非线性偏微分方程解的奇异性和唯一性的存在(不)性.真实的区域上微分方程的渐近分析及相关分析.Uchiyama证明了2阶一维p-椭圆型方程径向解的局部唯一性<nd>,并与L.Paredes一起从4阶p-椭圆型方程的一维模型中得到了一个具有正则奇异性的非线性偏微分方程的候选<th>解.吉野和M Suwa等对指数型分布进行了刻划及应用,得到了关于正定分布的一些结果.平田给出了3阶非线性偏微分方程通过椭圆函数的一族解的具体表示<rd>。后藤对渐近包含进行了研究。Aoyagi给出了非分析学习机的随机复杂性的渐近展开。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A characeteization of tempered distributions with support in a cone by the heat kernel method and its applications
热核法刻画锥体支撑回火分布及其应用
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Suwa;K.Yoshino
  • 通讯作者:
    K.Yoshino
On the singularities of solutions of nonlinear partial differential equations in the complex domain, II.
关于复域非线性偏微分方程解的奇异性,II.
The generalization error of reduced rank regression in Baysian Estimation
贝叶斯估计中降阶回归的泛化误差
Borel summability of formal solutions of some first order singular partial differential equations and normal forms of vector fields
一些一阶奇异偏微分方程的形式解和向量场的正规形式的Borel可求和性
Borel summability of formal solutions of some first order singular partial differential equations in the complex domain
复域中某些一阶奇异偏微分方程形式解的Borel可求和性
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.Kamiya;Makoto Tsukada;S.Ouchi
  • 通讯作者:
    S.Ouchi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

UCHIYAMA Koichi其他文献

UCHIYAMA Koichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('UCHIYAMA Koichi', 18)}}的其他基金

Study on differential equations by asymptotic analysis
渐进分析微分方程研究
  • 批准号:
    13640191
  • 财政年份:
    2001
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on asymptotic analysis of differential equations
微分方程渐近分析研究
  • 批准号:
    10640187
  • 财政年份:
    1998
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了