Study on asymptotic analysis of differential equations
微分方程渐近分析研究
基本信息
- 批准号:10640187
- 负责人:
- 金额:$ 1.54万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A. Asymptotic analysis of differential equations in complex domain.Uchiyama analyzed an integral representation with infinite saddles of the modified Bessel functions to give all illustration of new phenomena of Stokes geometry by hyperasymptotic analysis, WKB method and computer aided graphics. He also gave an overview of Stokes phenomenon of integrals with saddles. Ouchi studied linear partial differential equations in the complex domain. Supposing that the inhomogenious term and a solution are holomorphic outside of a hypersurface K, he proved that if the inhomogenious term has a certain asymptotic property near K, the solution has the asymptotic property of the same type. Tahara extended the classical Maillet type theorem to obtain that if a formal solution exists, it belongs to a certain Gevrey class. Furthermore, he gave uniqueness theorems, existence of a holomrophic solution, existence of singular points of the solution. Yoshino computed concretely the Jost function of a harmonic oscillator proposed by A. Voros using the Binet formula for Euler's Gamma functionB. Applied analysis in real domain.Hirata constructed a time global solution for small initial data using smoothing property. Saito constructed an algorithm of drawing of curves defined as real zeros of real algebraic polynomials with real coefficients and implemented it .Goto generalized a new construction of subfactors by Erlijman in operator algebra.Saito and Kobayashi helped to keep and enhance the computer environments for research.
A.复域微分方程的渐近分析内山分析了修正Bessel函数的无穷鞍积分表示,用超渐近分析、WKB方法和计算机辅助绘图,给出了Stokes几何新现象的全部例证。他还概述了斯托克斯现象的积分与鞍。大内研究线性偏微分方程在复杂的领域。假设非齐次项和一个解在超曲面K之外是全纯的,他证明了如果非齐次项在K附近有一定的渐近性质,则解也有相同类型的渐近性质。田原推广了经典的Maillet型定理,得到了如果存在形式解,则它属于某个Gevrey类。此外,他给唯一性定理,存在的全营养解决方案,存在奇点的解决方案。Yoshino具体计算了A. Voros使用Euler的Gamma函数的Binet公式。在真实的域中应用分析,平田利用光滑性质构造了小初值的时间全局解。斋藤构造了一个算法的绘制曲线定义为真实的零点的真实的代数多项式与真实的系数和实现它。后藤推广了一个新的建设的子因子Erlijman在算子代数。斋藤和小林有助于保持和加强计算机环境的研究。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K. Uchiyama: "Graphical illustration of Stokes phenomenon of integrals with saddles"Toward the Exact WKB analysis of Differential Equations, Linear or Non-linear, Kyoto UP. 87-95 (2000)
K. Uchiyama:“鞍点积分斯托克斯现象的图形说明”走向微分方程的精确 WKB 分析,线性或非线性,京都 UP。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Saito et al: "Faithful plotting on a two dimensional pixel space"Josai Mathematical Monographs. 2. 77-86 (2000)
T.Saito 等人:“二维像素空间上的忠实绘图”Josai 数学专着。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K. Uchiyama: "Asymptotic analysis of the modified Bessel function with respect to the parameter"RIMS Kokyuroku. 1088. 55-67 (1999)
K. Uchiyama:“关于参数的修正贝塞尔函数的渐近分析”RIMS Kokyuroku。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K. Uchiyama: "Graphical illustration of Stokes phenomenon of intergrals with saddles, "Toward the Exact WKB Analysis of Differential Equations, Linear or Non-linear""Kyoto Univ. Press. 87-95 (2000)
K. Uchiyama:“带有鞍座的积分斯托克斯现象的图形说明,“迈向线性或非线性微分方程的精确 WKB 分析”“京都大学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Tahara: "On the uniqueness theorem for nolinear singular partial differential eqs" J.Math.Sci.Univ.Tokyo. 5. 477-506 (1998)
H.Tahara:“关于非线性奇异偏微分方程的唯一性定理”J.Math.Sci.Univ.Tokyo。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UCHIYAMA Koichi其他文献
UCHIYAMA Koichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UCHIYAMA Koichi', 18)}}的其他基金
Asymptotic analytical study of differential equations
微分方程的渐近分析研究
- 批准号:
15540186 - 财政年份:2003
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on differential equations by asymptotic analysis
渐进分析微分方程研究
- 批准号:
13640191 - 财政年份:2001
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 1.54万 - 项目类别:
Research Grant
Asymptotic analysis of boundary value problems for strongly inhomogeneous multi-layered elastic plates
强非均匀多层弹性板边值问题的渐近分析
- 批准号:
EP/Y021983/1 - 财政年份:2024
- 资助金额:
$ 1.54万 - 项目类别:
Research Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
2311500 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Standard Grant
Asymptotic analysis of online training algorithms in deep learning
深度学习在线训练算法的渐近分析
- 批准号:
2879209 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Studentship
Asymptotic Analysis of Almost-Periodic Operators of Quantum Mechanics
量子力学准周期算子的渐近分析
- 批准号:
2306327 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Standard Grant
Conference: Midwestern Workshop on Asymptotic Analysis 2023
会议:2023 年中西部渐近分析研讨会
- 批准号:
2331073 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Standard Grant
Asymptotic Analysis of Geometric Partial Differential Equations
几何偏微分方程的渐近分析
- 批准号:
2305038 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Standard Grant
Asymptotic analysis and its application to fluorescence diffuse optical tomography
渐近分析及其在荧光漫射光学层析成像中的应用
- 批准号:
23K19002 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Collaborative Research: Towards designing optimal learning procedures via precise medium-dimensional asymptotic analysis
协作研究:通过精确的中维渐近分析设计最佳学习程序
- 批准号:
2210505 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Standard Grant
Asymptotic analysis and behavior of free boundary for nonlinear parabolic problems
非线性抛物线问题的渐近分析和自由边界行为
- 批准号:
22K03387 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




