Existence and Stability of Non-classical Weak Solutions to Hyperbolic Conservation Laws

双曲守恒定律非经典弱解的存在性和稳定性

基本信息

  • 批准号:
    15540221
  • 负责人:
  • 金额:
    $ 1.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

(i)Existence of Viscous Profiles for Conservation Laws with an Umbilic Point :In hyperbolic conservation laws with an umbilic point, we have not only compressive (classical) shock waves but also undercomressive shock waves and overcompressive shock waves that are called non-classical shock waves. In this investigation, we have studied the admissibility condition that two states composing a shock wave have viscous profiles in Case I and II of the Schaefer-Shearer's classification. We have proved that : if the base-point of the Hugoniot curve is not located on the median, then almost all states on the Hugoniot curve composing compressive and overcompressive shock waves have shock profiles. In Case I, if the base point is located on the median, then there exist sometimes under compressives shock waves having viscous profiles ; in this case, there are compressive shock waves with no viscous profile. We have succeeded in obtaining a necessary and sufficient condition for such non-existence. … More In case II, we have obtained a almost necessary and sufficient condition for the existence of overcompressive shock waves on a median. Main tool is a generalization of the first theorem of Morse to non-compact level sets.(ii)Steady Flows in the Laval Nozzle :The Laval nozzle consists of a converging entry section, a throat and a diverging exhaust section, and used to accelerate subsonic flow into supersonic flow. The pressure at the entrance is kept constant, say p_0, which is realized by attaching a sufficiently large chamber at the entrance. If the pressure pj at the exit is made slightly lower than p_0, the flow at rest accelerate in the converging section and decelerate in the diverging section. As p_j reduces more and more, finally, the subsonic flow accelerates into the sonic speed at the throat; this is called the choking. If p_1 reduces still more, the flow accelerates into supersonic flow in the diverging section and a standing shock wave appears there. Finally, the flow is smooth with steadily decreasing pressure and increasing speed, and sonic at the throat ; this is called the ideal nozzle flow. In this investigation, we provide mathematical descriptions of the above phenomena for general flows which do not necessarily obey the gamma law. Moreover, we study the bifurcation of the solution at the throat and the geometry of the Hugoniot curve for the standing shock waves. Less
(1)带脐点守恒律的粘性剖面的存在性:在带脐点的双曲守恒律中,我们不仅有压缩(经典)激波,而且有欠压缩激波和超压缩激波,它们被称为非经典激波。在本研究中,我们研究了在Schaefer-Shearer分类的情形I和情形II中,构成激波的两种状态具有粘性剖面的可容许条件。我们证明了:如果Hugoniot曲线的基点不在中位数上,那么在Hugoniot曲线上构成压缩激波和过压缩激波的几乎所有状态都有激波剖面。在情形1中,如果基点位于中位数,则有时存在具有粘性剖面的压缩激波;在这种情况下,存在没有粘性剖面的压缩激波。我们已经成功地获得了这种不存在的充分必要条件。在情形二中,我们得到了中值上超压激波存在的几乎充分必要条件。主要工具是将莫尔斯第一定理推广到非紧水平集。(ii)拉瓦尔喷管内的稳定流动:拉瓦尔喷管由会聚入口段、喉部和发散排气段组成,用于将亚音速流动加速为超音速流动。入口处的压力保持恒定,例如p_0,这是通过在入口处附加一个足够大的腔室来实现的。若使出口压力pj略低于p_0,则静止流动在收敛段加速,在发散段减速。随着p_j的不断减小,亚音速流最终加速到喉部声速;这叫做窒息。如果p_1进一步减小,则在发散段加速为超声速流动,在发散段出现驻波。最后,流动平稳,压速平稳下降,喉部声速平稳;这被称为理想喷嘴流量。在这项研究中,我们对不一定服从伽马定律的一般流动提供了上述现象的数学描述。此外,我们还研究了驻波喉部解的分岔和Hugoniot曲线的几何形状。少

项目成果

期刊论文数量(44)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
F.Asakura, M.Yamazaki: "Riemann Problem for Conservation Laws with an Umbilic Point"T.Hou-E. Tadmor (Ed.), Proceeding of the 9th International Conference on Hyperbolic Problems, Springer. 315-323 (2003)
F.Asakura,M.Yamazaki:“带有脐点的守恒定律的黎曼问题”T.Hou-E。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Existence of viscous profiles for conservation laws with anumbilic point
具有脐点的守恒定律粘性剖面的存在性
Stability regions for linear differential equations with two kinds of time lags
具有两种时滞的线性微分方程的稳定域
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    SAKATA;Sadahisa;T.Hara
  • 通讯作者:
    T.Hara
System identification based on distribution theory and wavelet transform
基于分布理论和小波变换的系统辨识
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    芦屋隆一;萬代武史;守本晃
  • 通讯作者:
    守本晃
Geometry of Hugoniot curve in 2 x 2 systems of hyper-bolic conservation laws with quadratic flux functions
具有二次通量函数的双曲守恒定律 2 x 2 系统中 Hugoniot 曲线的几何
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ASAKURA Fumioki其他文献

Path Decomposition Method Applied to the Equations of Polytropic Gas Dynamics
路径分解法在多变气体动力学方程中的应用
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lyubanova;A. Sh.; Tani;Atusi;ASAKURA Fumioki
  • 通讯作者:
    ASAKURA Fumioki

ASAKURA Fumioki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ASAKURA Fumioki', 18)}}的其他基金

Matheamtical Analysis of conservation laws modeling fluids in porous media
多孔介质中流体建模的守恒定律的数学分析
  • 批准号:
    22540238
  • 财政年份:
    2010
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cauchy Problem for Hyperbolic System of Conservation Laws
双曲守恒定律系统的柯西问题
  • 批准号:
    11640219
  • 财政年份:
    1999
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cauchy Problem for Hyperbolic System of Conservation Laws
双曲守恒定律系统的柯西问题
  • 批准号:
    09640233
  • 财政年份:
    1997
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Search for Q-balls and Nuclearites emitting thermal shock waves in IceCube
在 IceCube 中寻找发射热冲击波的 Q 球和核子
  • 批准号:
    24K17062
  • 财政年份:
    2024
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mild head injury due to shock waves: Elucidating the mechanisms of inflammation
冲击波引起的轻度头部损伤:阐明炎症机制
  • 批准号:
    23K15614
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Research on the Fundamental Mechanism of Non-Uniform Gas Detonation Propagation: Interference between Shock Waves and Heterogeneous Free Jets
气体非均匀爆震传播的基本机制研究:冲击波与非均质自由射流的干涉
  • 批准号:
    23KK0083
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Development of numerical methods for solving unsteady shock waves stably and correctly and its application to shock wave interaction phenomena
稳定正确求解非定常冲击波数值方法的发展及其在冲击波相互作用现象中的应用
  • 批准号:
    23KJ0981
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Shock Waves in Gas Dynamics
气体动力学中的冲击波
  • 批准号:
    EP/W001888/2
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Fellowship
Physics of Relativistic Shock Waves Probed with TeV Gamma-Ray Afterglows
用 TeV 伽马射线余辉探测相对论冲击波物理学
  • 批准号:
    22K03684
  • 财政年份:
    2022
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Shock Waves in Gas Dynamics
气体动力学中的冲击波
  • 批准号:
    EP/W001888/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Fellowship
SBIR Phase I: Controlled Application of Shock Waves to Extinguish Wildfires
SBIR 第一阶段:受控应用冲击波扑灭野火
  • 批准号:
    2051780
  • 财政年份:
    2021
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
RUI: Dispersive Shock Waves in Nonlinear Lattices: Theory to Application
RUI:非线性晶格中的色散冲击波:理论到应用
  • 批准号:
    2107945
  • 财政年份:
    2021
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Multiscale Mechanics of Composite Hydrogels Exposed to Shock Waves
复合水凝胶暴露于冲击波的多尺度力学
  • 批准号:
    2114565
  • 财政年份:
    2021
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了