Cauchy Problem for Hyperbolic System of Conservation Laws

双曲守恒定律系统的柯西问题

基本信息

  • 批准号:
    09640233
  • 负责人:
  • 金额:
    $ 1.92万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

Large Time Stability of the Maxwell States (F.Asakura)The investigator studies the Cauchy problem for a 2 * 2-system of conservation laws describing isentropic phase transitions. Two constant states satisfying the Maxwell equal-area principle constitute an admissible stationary solution ; a small perturbation of these Maxwell states will be their initial data. The main result is : there exists a global in time propagating phase boundary which is admissible in the sense that it satisfies the Abeyaratne-Knowles kinetic condition ; the states outside the phase boundary tend to the Maxwell states as time goes to infinity. Isothermal phase transitions modeled by a 3 * 3-system are also studied, In these cases, the velocity and the specific volume tend to the Maxwell states but the entropy density may tend to non-constant distributions. Abeyaratne-Knowles' driving traction is shown to be the difference of mechanical Gibbs function vspace2 exCauchy problem for nonstrictly hyperbolic systems i … More n Gevrey classes (H.Yamahara)Once the investigator gave a conjecture that the indices of Gevrey classes, in which the Cauchy problem is well-posed, are determined instead by the multipilcities of zeros of the minimal polynomial of the principal symbol. This is true provided that the multiplicities of the characteristic roots are constant.If one drops this assumption of constant multiplicities, the situation is in fact much more complicated. The investigator gave an example of 4 * 4-hyperbolic system which shows that, besides multiplicities of the characteristic roots, the degeneracy of the Jordan normal form of the principal part determine the appropriate Gevrey indices.Asymptotic stability for a linear system of differential-difference equations (S.Sakata)The differential-difference equation : dx/=ax(t)+Bx(t-r), r > 0 is studied. The investigator, studying the distribution of the roots of the characteristic equation, found a necessary and sufficient condition for the null solution to be asymptotically stable. The equation dx/=ax(t-r)+Bx(t-nr), r > 0 is also studied. For n=2,3, the investigator studied the set of (a, b) for the null solution to be asymptotically stable.A sufficient (substantially, necessary) condition is given for the system of equation dx/=-alpha{1-*x*^2}R(theta)x(*t*) to have a star-shaped periodic solution. Less
麦克斯韦国家(F.Asakura)的较大时间稳定性研究者研究了库奇的问题,该问题描述了2 * 2个保护法,描述了等等相位过渡。满足麦克斯韦等分地区原理的两个常数状态构成了可接受的固定解决方案;这些麦克斯韦状态的少量扰动将是其初始数据。主要的结果是:在繁殖相边界的全球范围内,这是可以接受的,因为它满足了Abeyaratne-Knowles动力学条件;随着时间的流逝,相边界以外的状态趋向于麦克斯韦状态。由3 * 3个系统建模的等温相跃迁也是研究的,在这些情况下,速度和特定体积趋向于麦克斯韦状态,但熵密度可能倾向于非稳定分布。 Abeyaratne-Knowles' driving traction is shown to be the difference of mechanical Gibbs function vspace2 exCauchy problem for nonstrictly hyperbolic systems i … More n Gevrey classes (H.Yamahara)Once the investigator gave a conjecture that the indices of Gevrey classes, in which the Cauchy problem is well-posed, are determined instead by the multipilcities of zeros of the minimal polynomial of the principal 象征。如果特征根的乘法是恒定的,则这是事实。如果一个人丢弃了恒定乘法的假设,则情况实际上更为复杂。研究者举例说明了4 * 4个高纤维系统的示例,该系统表明,除了特征根的多样性之外,主部分的约旦正常形式的退化还决定了适当的gevrey指标。平衡系统的线性稳定性差异方程(s.sakata)的线性稳定性(S.Sakata)差异方程式:dx/dx/dx/bx(dx/dx/bx)(d dx/bx)+bx(t)+bx(t)+bx(t)+bx(t)+bx(t)+bx(t)+bx(t)+bx(t)+bx(t)+bx(t)+bx(t)+bx(T)研究者研究了特征方程的根部分布,发现了无效溶液不对称稳定的必要条件。方程dx/= ax(t-r)+bx(t-nr),r> 0也是研究的。对于n = 2,3,研究人员研究了一组(a,b),以使零溶液不对称地稳定。方程dx/= - alpha {1-*x*x*x*^2} r(theta)r(theta)x(theta)x(*t*)的足够(基本上是必要的)条件,使得具有星状的周期性溶液。较少的

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
F.Asakura: "Global solutions with a single transonic shock wave for quasilinear hyperbolic systems" Methods and Applications of Analysis. 4(1). 33-52 (1997)
F.Asakura:“拟线性双曲系统的单一跨音速冲击波的全局解决方案”分析方法和应用。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Sakata: "Asymptotic stability for a linear system of differential-difference equations" Funkcialaj Ekvacioj. 41(3). 435-449 (1998)
S.Sakata:“微分差分方程线性系统的渐近稳定性”Funkcialaj Ekvacioj。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
F.Asakura: "The Glimm Lax theory via wave-frant tracking" Science Bulletin of Josai University. Special Issue 5. 131-142 (1998)
F.Asakura:“通过波域跟踪的 Glimm Lax 理论”城西大学科学通报。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
F.Asakura: "Large Time Stability of the Maxwell States" Methods and Applications of Analysis. 6 掲載予定. (1999)
F.Asakura:“麦克斯韦态的大时间稳定性”分析方法和应用 6(1999 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Yamahara: "An example of the Cauchy problem in Gevray classes" Proceeding of the International Symposium in Honor of Prof.Vaillant on His 65th Birthday Ehime Univ.60-62 (1998)
H.Yamahara:“Gevray 类中柯西问题的一个例子”纪念 Vaillant 教授 65 岁生日的国际研讨会论文集 Ehime Univ.60-62 (1998)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ASAKURA Fumioki其他文献

Path Decomposition Method Applied to the Equations of Polytropic Gas Dynamics
路径分解法在多变气体动力学方程中的应用
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lyubanova;A. Sh.; Tani;Atusi;ASAKURA Fumioki
  • 通讯作者:
    ASAKURA Fumioki

ASAKURA Fumioki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ASAKURA Fumioki', 18)}}的其他基金

Matheamtical Analysis of conservation laws modeling fluids in porous media
多孔介质中流体建模的守恒定律的数学分析
  • 批准号:
    22540238
  • 财政年份:
    2010
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Existence and Stability of Non-classical Weak Solutions to Hyperbolic Conservation Laws
双曲守恒定律非经典弱解的存在性和稳定性
  • 批准号:
    15540221
  • 财政年份:
    2003
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cauchy Problem for Hyperbolic System of Conservation Laws
双曲守恒定律系统的柯西问题
  • 批准号:
    11640219
  • 财政年份:
    1999
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

微胶囊保护法改进生物分子在二氧化硅多孔材料中的适应性
  • 批准号:
    20873005
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Exploring Phases of Matter With Restrictive Conservation Laws: Anomalies, Topology, and Dynamics
用限制性守恒定律探索物质相:异常、拓扑和动力学
  • 批准号:
    2313858
  • 财政年份:
    2023
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Continuing Grant
Stability, Uniqueness, and Existence for Solutions of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程解的稳定性、唯一性和存在性
  • 批准号:
    2306258
  • 财政年份:
    2023
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Standard Grant
Stability Theory for Systems of Hyperbolic Conservation Laws
双曲守恒定律系统的稳定性理论
  • 批准号:
    2306852
  • 财政年份:
    2023
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Standard Grant
Regularity and Approximation of Solutions to Conservation Laws
守恒定律解的正则性和近似性
  • 批准号:
    2306926
  • 财政年份:
    2023
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Standard Grant
Entropy-Stable Time-Stepping for Conservation Laws
守恒定律的熵稳定时间步进
  • 批准号:
    575539-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了