Theoretical Investigations on the spin-glass phase transitions and its low-temperature phase using the nonequilibrium relaxation method
非平衡弛豫法对自旋玻璃相变及其低温相的理论研究
基本信息
- 批准号:15540358
- 负责人:
- 金额:$ 1.86万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this research project is to clarify the spin-glass (SG) transition in the Heisenberg spin-glass model in three dimensions. In order to achieve thorough understandings of the SG transition and the low-temperature phase, we also investigated the XY model and the Ising model. Our main results are as follows.1.Development of efficient numerical recipes : We developed various protocols of the finite-time scaling analysis in order to improve the accuracy.2.Resolution of the spin- and the chiral-glass transitions in the Heisenberg SG model in three dimensions : The chiral-glass transition is confirmed to occur at higher temperature than the spin-glass transition temperature. We also observed that the spin and the chirality are decoupled above the SG transition temperature and become coupled below it.3.Dynamic universality : We found a possibility of the dynamic universality in the spin- and the chiral-glass transitions in three dimensions. All the investigated phase transition exhibit the same dynamic critical exponent.4.Low-temperature crossover in the SG phase : We found a crossover temperature in the spin-glass phase, where the ground-state relaxation appears. The dynamic behavior below this crossover temperature is equivalent to the T=0 dynamics. A dynamic exponent of the ground state is also estimated. It takes almost the same value between the Ising model and the Heisenberg model.5.Preparation for the quantum spin-glass problems : We investigated the quantum phase transition of the random alternating quantum spin chain. Our developed method is confirmed to be applicable to this interesting problems.
本研究项目的目的是在三维空间阐明海森堡自旋玻璃模型中的自旋玻璃跃迁。为了深入理解SG相变和低温相,我们还研究了XY模型和Ising模型。我们的主要结果如下:开发有效的数值配方:为了提高有限时间尺度分析的准确性,我们开发了各种方案。海森堡SG模型中自旋和手性玻璃化转变的三维解析:手性玻璃化转变发生在比自旋玻璃化转变温度更高的温度下。我们还观察到,自旋和手性在SG转变温度以上解耦,在SG转变温度以下耦合。动态普适性:我们发现了三维自旋玻璃跃迁和手性玻璃跃迁存在动态普适性的可能性。所有研究的相变都表现出相同的动态临界指数。SG相中低温交叉:我们发现自旋玻璃相中存在交叉温度,基态松弛出现。低于此交叉温度的动态行为相当于T=0动态。还估计了基态的动态指数。在伊辛模型和海森堡模型之间,它的值几乎相同。量子自旋玻璃问题的准备:我们研究了随机交替量子自旋链的量子相变。我们开发的方法被证实适用于这一有趣的问题。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonvanishing spin-glass transition temperature of the +-JXY model in three dimensions
三维 -JXY 模型的非零自旋玻璃化转变温度
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Takeo Yamamoto;Takeshi Sugashima;Tota Nakamura
- 通讯作者:Tota Nakamura
Nonvanishing spin-glass transition temperature of the ±J XY model in three dimensions
三维 ±J XY 模型的非零自旋玻璃化转变温度
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:T.Yamamoto;T.Sugashima;T.Nakamura
- 通讯作者:T.Nakamura
Nonvanishing spin-glass transition temperature of the +-J XY model in three dimensions
三维 -J XY 模型的非零自旋玻璃化转变温度
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:H.Yamada;T.Fukui;Takeo Yamamoto
- 通讯作者:Takeo Yamamoto
Weak universality of spin-glass transitions in three-dimensional ±J models
三维±J模型中自旋玻璃转变的弱普遍性
- DOI:10.1088/0305-4470/36/43/015
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Tota Nakamura;S. Endoh;T. Yamamoto
- 通讯作者:T. Yamamoto
Nonequilibrium Relaxation Analysis of the Spin-Glass Correlation Length
自旋玻璃相关长度的非平衡弛豫分析
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Tota Nakamura
- 通讯作者:Tota Nakamura
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAKAMURA Tota其他文献
NAKAMURA Tota的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAKAMURA Tota', 18)}}的其他基金
Does a critical line exist in a spin-glass phase?
自旋玻璃相中是否存在临界线?
- 批准号:
24540413 - 财政年份:2012
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Function control of a spin-lattice system and its critical phenomena
自旋晶格系统的函数控制及其临界现象
- 批准号:
21540343 - 财政年份:2009
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Generalization of cluster nonequilibrium relaxation method to off-critical region and its applications
簇非平衡弛豫方法对非临界区的推广及其应用
- 批准号:
20K03777 - 财政年份:2020
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improvement of dynamicsl scaling analysis by means of the kernel method and new development for the nonequilibrium relaxation method
核方法对动力学标度分析的改进及非平衡弛豫方法的新进展
- 批准号:
15K05205 - 财政年份:2015
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamical analysis for quantum many body systems and relating ones in terms of the nonequilibrium relaxation method and the gauge theory
非平衡弛豫法和规范理论对量子多体系统及相关系统的动力学分析
- 批准号:
19540397 - 财政年份:2007
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonequilibrium Relaxation Method
非平衡弛豫法
- 批准号:
15607003 - 财政年份:2003
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)