Medical image recognition of lungs regions for multi-slice CT images by using the revised GMDH-type neural networks.
使用改进的 GMDH 型神经网络对多层 CT 图像的肺部区域进行医学图像识别。
基本信息
- 批准号:15560349
- 负责人:
- 金额:$ 1.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this study, we developed the revised GMDH (Group Method of Data Handling)-type neural network algorithms which can automatically organize the optimum neural network architectures fitting the characteristics of X-ray CT images of the lungs and applied this developed algorism to medical image recognition of the lungs. In these algorithms, the optimum neural network architecture is automatically selected from three types of neural network architectures such as sigmoid function type neural networks, RBF (Radial Basis Function) type neural networks and polynomial type neural networks. Furthermore, the structural parameters such as the number of layers, the number of neurons in the hidden layers and optimum neuron architectures are automatically selected so as to minimize the prediction error criterion defined as AIC ( Akaike's Information Criterion) or PSS (Prediction Sum of Squares). These algorithms have another ability of self-selecting the optimum input variables from many image characteristics so as to minimize the prediction error criterion AIC or PSS. Therefore, we can easily these revised GMDH-type neural network algorithms to the medical image recognition because the optimum neural network architecture fitting the medical image characteristics is automatically organized.In this study, we are applying these revised GMDH-type neural network algorithms to the medical image recognition of the lungs and we organize the optimum neural network architectures fitting the image characteristics of the lungs. By using the organized neural networks in the computer, the regions of the lungs of the X-ray CT images are automatically extracted with the good accuracy.
在这项研究中,我们提出了一种改进的GMDH型神经网络算法,该算法能够自动组织符合肺部X射线CT图像特征的最佳神经网络结构,并将该算法应用于肺部医学图像识别。在这些算法中,从Sigmoid函数型神经网络、RBF(径向基函数)型神经网络和多项式神经网络三种神经网络结构中自动选择最优的神经网络结构。此外,为了最小化定义为AIC(Akaike信息准则)或PSS(预测平方和)的预测误差准则,自动选择诸如层数、隐层中的神经元数目和最优神经元结构等结构参数。这些算法还具有从众多图像特征中自选择最佳输入变量的能力,从而使预测误差准则AIC或PSS最小化。因此,我们可以很容易地将这些修正的GMDH型神经网络算法应用到医学图像识别中,因为符合医学图像特征的最优神经网络结构是自动组织的。利用计算机中有组织的神经网络,自动提取X射线CT图像中的肺部区域,具有较高的精度。
项目成果
期刊论文数量(76)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Revised GMDH-type Neural Networks using Prediction Error Criterion AIC and PSS.
使用预测误差准则 AIC 和 PSS 修正 GMDH 型神经网络。
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo
- 通讯作者:Tadashi Kondo
T.Kondo: "Revised GMDH-type neural networks with radial basis function and their application to medical image recognition of stomach"A Journal of Mathematical Modeling and simulation in Systems Analysis. Vol.43,No.10. 1363-1376 (2003)
T.Kondo:“修订后的具有径向基函数的 GMDH 型神经网络及其在胃医学图像识别中的应用”系统分析数学建模与模拟杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Identification of the Radial Basis Function Networks by using the Multi-Layered GMDH-type Neural network Algorithm
多层GMDH型神经网络算法辨识径向基函数网络
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo
- 通讯作者:Tadashi Kondo
Structural identification of the multi-layered neural networks by using revised GMDH-type neural network algorithm with a feedback loop
使用改进的带有反馈环路的 GMDH 型神经网络算法进行多层神经网络的结构识别
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Junji Ueno;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Junji Ueno;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Junji Ueno;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo
- 通讯作者:Tadashi Kondo
Revised GMDH-type neural networks with radial basis functions and their application to medical image recognition of stomach
改进的径向基函数GMDH型神经网络及其在胃医学图像识别中的应用
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Junji Ueno;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Junji Ueno;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Junji Ueno;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo;Tadashi Kondo
- 通讯作者:Tadashi Kondo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JUNJI Ueno其他文献
JUNJI Ueno的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Research Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
SkyANN: Skyrmionic Artificial Neural Networks
SkyANN:Skyrmionic 人工神经网络
- 批准号:
10108371 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
EU-Funded
CAREER: Rethinking Spiking Neural Networks from a Dynamical System Perspective
职业:从动态系统的角度重新思考尖峰神经网络
- 批准号:
2337646 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Continuing Grant
RII Track-4:@NASA: Automating Character Extraction for Taxonomic Species Descriptions Using Neural Networks, Transformer, and Computer Vision Signal Processing Architectures
RII Track-4:@NASA:使用神经网络、变压器和计算机视觉信号处理架构自动提取分类物种描述的字符
- 批准号:
2327168 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
Neural Networks for Stationary and Evolutionary Variational Problems
用于稳态和进化变分问题的神经网络
- 批准号:
2424801 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Continuing Grant
Organic optoelectronic neural networks
有机光电神经网络
- 批准号:
EP/Y020596/1 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Research Grant
Inferring the evolution of functional connectivity over learning in large-scale neural recordings using low-tensor-rank recurrent neural networks
使用低张量秩递归神经网络推断大规模神经记录中功能连接学习的演变
- 批准号:
BB/Y513957/1 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Research Grant