A Study on Data Compression Using Image Sets and Ambiguous Entropy
利用图像集和模糊熵进行数据压缩的研究
基本信息
- 批准号:16500047
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Information in two-dimension digital monochromatic image can be considered to be a mapping function from the domain of pixels into the region of the intensity at contrast. It usually shows by the matrix expression. It can be thought that the image encoding such as JPEG has achieved the information compression by concisely expressing the approximation type. The image encoding method proposed by this research handles data within the range of the intensity in each pixel of the original image which has the upper bound and the lower bound. It has features such as suiting the object encoding, being able to use the set operations, being able to treat the level of the quality quantitatively and systematically. by using the concept of ambiguous information, and being able to reproduce the image based on a preferable criterion during the renewal processing.In this report, the classes of the objects adopt the smooth figure where smooth area is expressed, the edge figure where boundary of an object is identified, and the one-dimension scanning figure which is not depending on the kind of pictures and can be applied to arbitrary domains. The image compression and the reconstruction were tried to various images like a natural image and an illustration image with monochromatic or e color, and the advantage and the fault of the proposed method were investigated in detail. In the color image, we separate the plains by using the YUV table color system which are mutually independent. This encoding and decoding process are performed to each, and the constructed picture is compounded. It is able to be confirmed that the above-mentioned features functioned effectively as the result of various experiments. However, there is a fault that the compressibility is inferior compared with JPEG in natural images. As future improvements it is necessary to add the new object classes and to devise the mode of the color image expression.
二维数字单色图像中的信息可以看作是从像素域到对比度强度区域的映射函数。它通常用矩阵表达式表示。可以认为,JPEG等图像编码通过简洁地表示近似类型,实现了信息压缩。本研究提出的图像编码方法对原始图像中每个像素的强度范围内的数据进行处理,该强度范围有上界和下界。它具有适合对象编码、能够使用集合运算、能够定量、系统地处理质量层次等特点。利用模糊信息的概念,在更新处理过程中能够基于较优准则再现图像。在本报告中,物体的类别采用了表示光滑区域的光滑图,识别物体边界的边缘图,以及不依赖于图片种类,可以应用于任意域的一维扫描图。对自然图像和单色或彩色插图图像进行了图像压缩和重构,详细分析了该方法的优点和缺点。在彩色图像中,我们使用相互独立的YUV表颜色系统对平原进行分离。对每幅图像进行编码和解码,合成图像。通过各种实验,可以证实上述特征有效地发挥了作用。但是在自然图像中存在着压缩性能不如JPEG的缺点。在今后的改进中,有必要增加新的对象类,并设计彩色图像的表达模式。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Image Data Compression using image sets and ambiguous entropy
使用图像集和模糊熵进行图像数据压缩
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Hironori SATO;Hitoshi OBARA;Masato Sakata
- 通讯作者:Masato Sakata
ファジー推論ニューラルネットワークを用いた動画像からの動オブジェクト抽出
使用模糊推理神经网络从视频图像中提取运动目标
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:桑原修一;小原仁;坂田真人
- 通讯作者:坂田真人
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAKATA Masato其他文献
SAKATA Masato的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: OAC Core: Topology-Aware Data Compression for Scientific Analysis and Visualization
合作研究:OAC 核心:用于科学分析和可视化的拓扑感知数据压缩
- 批准号:
2313124 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Topology-Aware Data Compression for Scientific Analysis and Visualization
合作研究:OAC 核心:用于科学分析和可视化的拓扑感知数据压缩
- 批准号:
2313122 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant
STTR Phase I: Machine Learning-Based Smart Data Compression Solutions for Structural Health Monitoring Sensors
STTR 第一阶段:用于结构健康监测传感器的基于机器学习的智能数据压缩解决方案
- 批准号:
2321884 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant
Compressed learning: theory and application of data compression technique that allows direct learning from optimally encoded data
压缩学习:数据压缩技术的理论和应用,允许从最佳编码数据中直接学习
- 批准号:
23K11233 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: OAC Core: Topology-Aware Data Compression for Scientific Analysis and Visualization
合作研究:OAC 核心:用于科学分析和可视化的拓扑感知数据压缩
- 批准号:
2313123 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant
Learning-Oriented Data Compression with Applications
面向学习的数据压缩及其应用
- 批准号:
RGPIN-2018-06768 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Discovery Grants Program - Individual
Data compression for biomedical data analysis
用于生物医学数据分析的数据压缩
- 批准号:
DGDND-2022-03074 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
DND/NSERC Discovery Grant Supplement
A mathematical foundation for hexagon grids with apertures of even power of 2 and its application to high data compression of trajectory data
孔径为2偶次方六边形网格的数学基础及其在轨迹数据高数据压缩中的应用
- 批准号:
22H03597 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Data compression for biomedical data analysis
用于生物医学数据分析的数据压缩
- 批准号:
RGPIN-2022-03074 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Discovery Grants Program - Individual
Efficient log data compression and analytics system
高效的日志数据压缩和分析系统
- 批准号:
570524-2021 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Alliance Grants