Data Mining from Hybrid Data with Numerical Attributes and Graph Structures
具有数值属性和图结构的混合数据的数据挖掘
基本信息
- 批准号:16500084
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this research project is to give theoretical foundations of data mining from hybrid data with numerical attributes and graph structures. Since HTML/XML files are considered to be tree structured data, methods for discovering characteristic patterns from tree structured data are useful. Based on Genetic Programming, we have implemented a discovery system for characteristic tree structured patterns from given positive and negative examples of tree structured data. Our tree structured patterns are tag tree patterns. Although variables in a tag tree pattern are structured variables which can be substituted by arbitrary trees, these variables are considered to be special edges in a tree. Then we have naturally applied Genetic Programming, which is a genetic method for tree structured objects, to implementing our discovery system. Inferring real-valued functions from numerical data obtained from experiments or observations is a basic learning method for data mining from numerical data. A recursive real is a real number which we can deal with on a computer. So we have investigated learnabilities of recursive real-valued functions such as prediction and finite prediction of recursive real-valued functions. Also we have given various learning algorithms for tree or graph structured data, including an algorithm for extracting structural features among words and polynomial time inductive inference algorithms from positive data for newly introduced classes of graph languages.
本课题旨在为具有数值属性和图结构的混合数据的数据挖掘提供理论基础。由于HTML/XML文件被认为是树状结构数据,因此从树状结构数据中发现特征模式的方法非常有用。基于遗传规划,我们实现了一个从给定的树状结构数据正反例中发现特征树状结构模式的系统。我们的树结构模式是标签树模式。虽然标签树模式中的变量是可以被任意树替换的结构化变量,但这些变量被认为是树中的特殊边。然后我们自然地应用了遗传规划,这是一种树状结构对象的遗传方法,来实现我们的发现系统。从实验或观测得到的数值数据中推断实值函数是数值数据挖掘的一种基本学习方法。递归实数是我们可以在计算机上处理的实数。因此,我们研究了递归实值函数的可学习性,如递归实值函数的预测和有限预测。此外,我们还给出了树或图结构数据的各种学习算法,包括从单词中提取结构特征的算法和从新引入的图语言类的正数据中提取多项式时间归纳推理算法。
项目成果
期刊论文数量(52)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Prediction of recursive real-valued functions from finite examples. Joint JSAI 2005 Workshop-Post-Proceedings, Springer-Verlag
从有限示例预测递归实值函数。
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:E.Hirowatari;K.Hirata;T.Miyahara
- 通讯作者:T.Miyahara
Finite prediction of recursive real-valued functions. Proceedings of Computability in Europe 2006 (CIE-2006), University of Wales Swansea
递归实值函数的有限预测。
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:E.Hirowatari;K.Hirata;T.Miyahara
- 通讯作者:T.Miyahara
Learning of Elementary Formal Systems with Two Clauses using queries
使用查询学习具有两个子句的基本形式系统
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:H.Kato;S.Matsumoto;T.Miyahara
- 通讯作者:T.Miyahara
Evolution of Characteristic Tree Structured Patterns from Semistructured Documents
半结构化文档特征树结构模式的演变
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:K.Inata;T.Miyahara;H.Ueda;and K.Takahashi
- 通讯作者:and K.Takahashi
Polynomial Time Inductive Inference of TTSP Graph Languages from Positive Data
TTSP图语言从正数据的多项式时间归纳推理
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:R.Takami;Y.Suzuki;T.Uchida;T.Shoudai;and Y.Nakamura
- 通讯作者:and Y.Nakamura
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIYAHARA Tetsuhiro其他文献
Exact Learning of Primitive Formal Systems Defining Labeled Ordered Tree Languages via Queries
通过查询定义带标签有序树语言的原始形式系统的精确学习
- DOI:
10.1587/transinf.2018fcp0011 - 发表时间:
2019 - 期刊:
- 影响因子:0.7
- 作者:
UCHIDA Tomoyuki;MATSUMOTO Satoshi;SHOUDAI Takayoshi;SUZUKI Yusuke;MIYAHARA Tetsuhiro - 通讯作者:
MIYAHARA Tetsuhiro
An Efficient Pattern Matching Algorithm for Unordered Term Tree Patterns of Bounded Dimension
有界维无序词树模式的高效模式匹配算法
- DOI:
10.1587/transfun.e101.a.1344 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
SHOUDAI Takayoshi;MIYAHARA Tetsuhiro;UCHIDA Tomoyuki;MATSUMOTO Satoshi;SUZUKI Yusuke - 通讯作者:
SUZUKI Yusuke
MIYAHARA Tetsuhiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIYAHARA Tetsuhiro', 18)}}的其他基金
Discovery of Deep Knowledge from Graph-Structured Data using Expressive Graph-Structured Patterns
使用富有表现力的图结构模式从图结构数据中发现深层知识
- 批准号:
15K00312 - 财政年份:2015
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effective Discovery of Hidden Structured Knowledge using Data Mining and Machine Learning
使用数据挖掘和机器学习有效发现隐藏的结构化知识
- 批准号:
22500135 - 财政年份:2010
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Information Fusion from Semi-structured Data using Data Mining and Machine Learning
使用数据挖掘和机器学习从半结构化数据中进行信息融合
- 批准号:
19500129 - 财政年份:2007
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discovery Knowledge and Data Mining from Structured Data
从结构化数据中发现知识和数据挖掘
- 批准号:
13680459 - 财政年份:2001
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Computing over Compressed Graph-Structured Data
压缩图结构数据的计算
- 批准号:
EP/X039447/1 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Research Grant
On Optimal Transport-based Statistical Measures for Graph Structured Data and Applications
基于传输的最优图结构化数据统计方法及应用
- 批准号:
23K16939 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Machine learning for graph-structured data: Understanding complex biological systems
图结构数据的机器学习:理解复杂的生物系统
- 批准号:
RGPIN-2020-05341 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual
Machine learning for graph-structured data: Understanding complex biological systems
图结构数据的机器学习:理解复杂的生物系统
- 批准号:
RGPIN-2020-05341 - 财政年份:2021
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual
Computing Workstations for Deep Learning on Graph-Structured Data
用于图结构数据深度学习的计算工作站
- 批准号:
RTI-2022-00185 - 财政年份:2021
- 资助金额:
$ 2.05万 - 项目类别:
Research Tools and Instruments
Machine learning for graph-structured data: Understanding complex biological systems
图结构数据的机器学习:理解复杂的生物系统
- 批准号:
RGPIN-2020-05341 - 财政年份:2020
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual
Machine learning for graph-structured data: Understanding complex biological systems
图结构数据的机器学习:理解复杂的生物系统
- 批准号:
DGECR-2020-00283 - 财政年份:2020
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Launch Supplement
Development of high-performance graph mining methods for graph structured data using various additional information
使用各种附加信息开发图结构化数据的高性能图挖掘方法
- 批准号:
19K12102 - 财政年份:2019
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of parallel graph mining systems for compressed large-scale graph structured data
开发用于压缩大规模图结构化数据的并行图挖掘系统
- 批准号:
19K12103 - 财政年份:2019
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discovery of Deep Knowledge from Graph-Structured Data using Expressive Graph-Structured Patterns
使用富有表现力的图结构模式从图结构数据中发现深层知识
- 批准号:
15K00312 - 财政年份:2015
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)