Learning & Adaptation of Soft Computing Techniques Operating in the Nonstationary Environment
学习
基本信息
- 批准号:16500129
- 负责人:
- 金额:$ 0.77万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Despite the current matured state concerning the theory and applications of the soft computing techniques, there are still several problems to be settled. One of the most important problems might be : "How to cope with the nonstationary environment ?" Recently, the following idea hit me : "Fusion of learning automata and soft computing techniques may contribute a lot in finding a successful way for solving the above problem."In this research project, I was mainly involved in the research to investigate the learning performance of the hierarchical structure learning automata under the unknown nonstationary multiteacher environment in order to check whether this idea is OK. I was also involved to the research which deals with the real problems that contain rather strong nonlinearity.The following are our research results :1.We proposed a new learning algorithm for the hierarchical structure learning automata operating in the nonstationary multiteacher environment. We proved that the proposed algorithm ensures convergence with probability 1 to the optimal path under a certain nonstationary multiteacher environment.2.In order to compare the learning performance of the proposed algorithm in the nonstationary multiteacher environment with the algorithms DGPA and SE_<RI> (two of the fastest algorithms today), we carried out a rather large numbers of the computer simulations. The simulation results we obtained confirm the effectiveness of the proposed algorithm.3.We have applied neural networks and genetic algorithms to the fields of financial engineering & computer gaming. We succeeded in obtaining the following results :(1)Neural networks are quite helpful in order to predict the Golden Cross and the Dead Cross several weeks before they occur.(2)Fusion of neural networks and genetic algorithms is also quite helpful for finding an appropriate rule to make the Environmental Game much more exciting.
尽管软计算技术的理论和应用已经比较成熟,但仍有一些问题需要解决。其中最重要的问题之一可能是:“如何科普非平稳环境?最近,我突然想到:“学习自动机和软计算技术的融合可能有助于找到解决上述问题的成功方法。”“在这个研究项目中,我主要参与了研究分层结构学习自动机在未知的非平稳多教师环境下的学习性能,以检查这个想法是否可行。本人还参与了对含有较强非线性的真实的问题的研究,取得了以下研究成果:1.提出了一种新的非平稳多教师环境下的层次结构学习自动机的学习算法。证明了在一定的非平稳多教师环境下,该算法以概率1收敛到最优路径。2.为了比较该算法在非平稳多教师环境下的学习性能,与DGPA和SE_<RI>(目前最快的两种算法)进行了大量的计算机仿真。仿真结果验证了算法的有效性。3.将神经网络和遗传算法应用于金融工程和计算机游戏领域。我们成功地获得了以下结果:(1)神经网络对于预测黄金十字架和死十字架的发生有很大的帮助。(2)神经网络和遗传算法的融合也有助于找到一个合适的规则,使环境游戏更令人兴奋。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning behaviors of the hierarchical structure stochastic automata : Operating in the nonstationary multiteacher environment
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:N. Baba;Y. Mogami
- 通讯作者:N. Baba;Y. Mogami
Utilization of Neural Networks and Genetic Algorithms to Make Game Playing More Exciting
利用神经网络和遗传算法让游戏玩起来更刺激
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Norio Baba;Wang Shuqin
- 通讯作者:Wang Shuqin
A New Learning Algorithm for the Hierarchical Structure Learning Automata Operating in the General Multiteacher Environment
通用多教师环境下分层结构学习自动机的新学习算法
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:今村晋一郎;河野英昭;前田博;生駒哲一;Norio Baba
- 通讯作者:Norio Baba
An Intelligent Utilization of Neural Networks for Improving the Traditional Technical Analysis in the Stock Markets
智能利用神经网络改进股票市场的传统技术分析
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Katahira;K.;Nakamura;T.;Kawase;S.;Kawakami;A.;et al.;Norio Baba
- 通讯作者:Norio Baba
A Consideration on the HSLA under the Nonstationary Multiteacher Environment and Their Application to Simulation and Gaming
非平稳多教师环境下 HSLA 的思考及其在仿真和游戏中的应用
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:佐々木敦守;河野英昭;前田博;生駒哲一;Norio Baba
- 通讯作者:Norio Baba
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BABA Norio其他文献
BABA Norio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BABA Norio', 18)}}的其他基金
Practical development of a novel non-linear discrete image reconstruction method for electron tomography unaffected by the missing data range
不受缺失数据范围影响的新型电子断层扫描非线性离散图像重建方法的实际开发
- 批准号:
24510156 - 财政年份:2012
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Learning automaton in a non-stationary environment - Towards the effective use of soft computing -
非平稳环境中的学习自动机 - 迈向软计算的有效利用 -
- 批准号:
23500277 - 财政年份:2011
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of a novel electron tomographic reconstruction method based on a newly found property of image fine dots which convergently move to definitive positions
基于新发现的图像细点会聚移动到确定位置的特性,建立一种新型电子断层扫描重建方法
- 批准号:
21310075 - 财政年份:2009
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Reinforcement of the Performances of the Soft Computing Techniques & Utilization of the learning Automaton-Challenges Toward Nonstationary Environment
软计算技术性能的强化
- 批准号:
18500173 - 财政年份:2006
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Learning Automata Efficiently
高效学习自动机
- 批准号:
505138-2017 - 财政年份:2020
- 资助金额:
$ 0.77万 - 项目类别:
Postgraduate Scholarships - Doctoral
Studies in Learning Automata and Pattern Recognition
学习自动机和模式识别研究
- 批准号:
RGPIN-2015-05205 - 财政年份:2019
- 资助金额:
$ 0.77万 - 项目类别:
Discovery Grants Program - Individual
Learning Automata Efficiently
高效学习自动机
- 批准号:
505138-2017 - 财政年份:2019
- 资助金额:
$ 0.77万 - 项目类别:
Postgraduate Scholarships - Doctoral
Learning Automata Efficiently
高效学习自动机
- 批准号:
505138-2017 - 财政年份:2018
- 资助金额:
$ 0.77万 - 项目类别:
Postgraduate Scholarships - Doctoral
Studies in Learning Automata and Pattern Recognition
学习自动机和模式识别研究
- 批准号:
RGPIN-2015-05205 - 财政年份:2018
- 资助金额:
$ 0.77万 - 项目类别:
Discovery Grants Program - Individual
Studies in Learning Automata and Pattern Recognition
学习自动机和模式识别研究
- 批准号:
RGPIN-2015-05205 - 财政年份:2017
- 资助金额:
$ 0.77万 - 项目类别:
Discovery Grants Program - Individual
Learning Automata Efficiently
高效学习自动机
- 批准号:
505138-2017 - 财政年份:2017
- 资助金额:
$ 0.77万 - 项目类别:
Postgraduate Scholarships - Doctoral
Studies in Learning Automata and Pattern Recognition
学习自动机和模式识别研究
- 批准号:
RGPIN-2015-05205 - 财政年份:2016
- 资助金额:
$ 0.77万 - 项目类别:
Discovery Grants Program - Individual
Learning automata from data
从数据中学习自动机
- 批准号:
482548-2015 - 财政年份:2015
- 资助金额:
$ 0.77万 - 项目类别:
University Undergraduate Student Research Awards
Studies in Learning Automata and Pattern Recognition
学习自动机和模式识别研究
- 批准号:
RGPIN-2015-05205 - 财政年份:2015
- 资助金额:
$ 0.77万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




